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Abstract: Robust and accurate schemes are proposed toecsuipsurface and overland
flows by enforcing the continuity of the normal flux and thegsure. Richards’ equation
governing the subsurface flow is discretized using a Bactt\afferentiation Formula in
time and a symmetric interior penalty Discontinuous Gaferkethod in space. The kine-
matic wave equation governing the overland flow is disceetiasing a Godunov scheme.
Both schemes are individually mass conservative and carséé within coupling algo-
rithms that ensure overall mass conservation owing to aifspelesign of the interface
fluxes in the multi-step case. For field drainage problemsalse propose a method for
representing drain tubes using Signorini type conditiddemerical results are presented
to illustrate the performances of the proposed algorithms.

1. INTRODUCTION 2. RICHARDS' EQUATION

We present in this part some results concerning the
The interactions of subsurface and overland flowsesolution of the Richards’ equation written in the
are an important ingredient to understand hydrolconservative form
ogy processes. While there is an extensive litera-
ture devoted to the numerical study of water flows &0(Y)) -0 (K(Y)O(P+2) =0,
in single-phase and variably saturated porous media,
the issue of coupling such flows with surface flowswherey is the hydraulic headd(y) the volumetric
has received less attention. A first way to couplewater contentk (/) the hydraulic conductivity and
Darcy and Stokes flows is through the well-knownz the vertical coordinate.
Beavers—Joseph—Saffman condition [1, 2]. Another
approach [3] considers discontinuous pressures and
evaluates an interface flux as the pressure differenc2.1. Notations
multiplicated by an exchange coefficient (depend- o
ing on the soil). We adopt a third approach [4, 5]LeF Q be a bounded domain W|th_ ou'FV\{ard r)ormal
based on both normal flux and pressure continuitytNit vectorng. The boundary of2 is divided into
the hydraulic head of the subsurface flow matchef€ part where a Dirichlet conditiogy = Jp is
the depth of the overland flow at the interface, whiledMposed and the part where a Neumann condition
the normal ground flow velocity is used as a source” K(W)D(Y +2) - ng = vy is imposed. LeNr be

term in the mass conservation equation of the overthe total number of time steps and &tbe the con-
land flow. stant time step such thisly = T /6t. For any integer

n ;
In this work, the subsurface flow is described byn = 0, " denotes the value taken kyat timendt.

Richards’ equation and the overland flow is de_We assume that the unstationary term can be ap-

scribed by the kinematic wave approximation. Ourproximated by a backward differentiation formula,
two objectives respectively presented in sections 2 q
and 3 are 1) to optimize the resolution of Richards’ (G[B(w))" =
equation with several methods (matrix renumerota- % Ot
tion, high-order initialization and approximation by

cubic spline of the hydraulic conductivity), 2) to de- whereq is the order of the formula anfor' }o<r<q
sign robust and accurate schemes for representére suitable coefficients. The discrete functions
ing drains and for coupling subsurface and overland l.U”’r}1<r<q being known, successive approxima-
flows in view of two physical constraints: pressuretions ™™ of )" are computed with a quasi-Newton
continuity and overall mass conservation. procedure detailled above.

q
I o)+ o(5t9),



2.2. Discretization and for a Neumann fadey, we add the term

We use a Discontinuous Galerkin (DG) method _/ (W+K(Q)eg-ng)o.
which is locally conservative, accurate and flexible 2N

in the use of non-matching meshes. The weak form

of the symmetric interior penalty DG method using2.3. Validation test case

a BDF scheme in time and a quasi-Newton metho
to treat the non-linearity can be concisely written on
each element of the mesh of sizé (see [6] for
more details),

%e solve a one-dimensional infiltration problemin a
Imvertical column Q = [0, 1]) during 12h. The soil

is parametrized by the modified Van Genuchten’s
constitutive relations [7],

v(p S ]P)p(.[)7 aT(w27ma 54’2’m’ (p) = bT(w27ma (p)7 9(4]) — é(@s— Gr) -|— Qr’
where g™ = ™t — g™, the superscripm K () = KB (1—(1—(8/B)Ymm)?
refers to the quasi-Newton loop afig(T) is the set ¥)=Ks ( (- (1/[3)1/m)m)2 J
of polynomials of total degree less than or equal to
pon an element. wheref andp are defined as
* The forma, is g LHEMIT g = (14 ()™,

(A (elghmm

al .
ar(d, g, ) = /(5*09 8({)pe+K()Dy- DCP) if < —hsand whered = 1 if y > —hs. The pa-
rameters are

+ [ (K@)De@(W) ~w) +3C.w)e) -1, 6.~ 0068 6038
. . . Ks=5.5510"° 1 =0. 1
where () is the numerical flux associated with hS: gc?n5 0“cms ‘;: 2 8880m
the hydraulic head ° m—0 0826
R {w}r foraninternal face where6; is the residual water conterf; the water
JW)lr = 0  foraDirichlet face content at saturation arkk the hydraulic conduc-
¢ foraNeumann face tivity at saturation. The paramethg is referred as

andu({, @) is the numerical flux associated with the the minimur.n.capillary hei.ght. FigurelX presents
variableu = —K ()0, the conductivity as a function of the hydraulic head.

— K(Q)Oy + nKsde tyng,

—{K(Q)Oy}e + nKsd= @l ene,
U, @)= A

respectively defined for an internal face, a Dirichlet
face and a Neumann face. The operafgrand []

are the average and the jump operator. The param-
etern is positive (to be taken larger than a minimal 2l
threshold depending on the shape-regularity of the
mesh) Ks is the hydraulic conductivity at saturation
anddg is the largest diameter of the triangle(s) of
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whichF is a face. Hydraulic headp [cm]
e The right-hand sidé is Figure (1): Hydraulic conductivity.
br (¢, ) = /D &)@ —a((,,9) The initial condition is an hydrostatic pressure, a

4 g9 zero flux is imposed on the bottom of the column
/ ( Z 59 9(5)) ® and a zero hydraulic head is imposed on the top:

0 4 o
For a Dirichlet facep, we add orb; the term ¢~ =-1m-z inQ,

w=0 at{0}x[0,T],
/FD (—K(Z) 0p-ng + nKsde 1) o, Wo=0 at{l}x[0,T].



A constant time ste@t = 2minis used. The hy- 14- a cubic spline interpolation of the conductivity
draulic head plotted every 0.1 ddgh48min) on K to replaceK by a more simple algebraic relation.

Figure @) is similar to the one in [7]. The symbols 11, 12, 13 and 14 refer to the above im-

: : : : provements. Figured shows that the relative error
e(y) = 1001 - K(y)/K(y)) is lower than 5% for
our Van Genuchten’s law interpolation (see § 2.3.).
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Figure @): Hydraulic head at various times. Hydraulic heady [cm
Figure @): Cubic spline interpolation erra@(y).

2.4. Optimization The quantityN; is the mean number (in time) of
quasi-Newton iterations angpy is the CPU time
of the simulation. The dimensionless tetfp, is
defined as

We study the variation of the CPU time due to the
four improvements described below:

I11- a renumerotation of the non zero elements to re- tépy= 10()&7
duce the matrix bandwith. Figur8)(is an example tepuref
obtained with the Cuthill-McKee algorithm [8]. wheretcpyyet is the CPU time without optimization.
11 12 13 14 N¢ tcpu  tepy
o @ @ o 34 3013 100
x @ @ @ 34 2033 67
g x @ @ 1.8 1609 53
g o x @ 34 3071 102
g o @ x 35 2723 90
Figure @): Initial profile and ordering profile. g x x x 21 1610 53
Xx @ x x 35 1752 58
I12- a second-order initialization in the quasi-Newton x x o x 21 1106 37
algorithm (when the second-order BDF is used), < x x o 18 1049 35

1,0
Gy = W,

W = 2u — ),

x x 21 1015 34

X
X

Table 1: Optimization results.
vn>3, ¥ =3¢t -3y + g2,

It is interesting to note that the renumerotation (11)

] ] o and the second-order initialisation (12) have a sig-
13- an integration by parts of the term containing thepjficant influence to the CPU time while the inte-

to replace the basic initializatiap{)"O = (,u{)‘*l, vn.

divergence of the hydraulic conductivity i, gration by parts (I13) and the cubic spline (14) have
= L lower impact. As expected\; is the same when the
/T 0-(K(¢)e)o= /TK(Z)GZD(’) matrix profile changes wheredl decreases when

+/ K(Zl7) n the high-order initialization is used. These elements
ar 7)€ @ . permit to reduce the CPU time by a factor three.



3. COUPLING WITH RUNOFF Observe that the above partition of setsand 2
are time-dependent. The total system for coupling

We present in this part the coupling of the Rlchardsdrained subsurface flow and surface flows is

equation with the kinematic wave (KW) approxima-

tion (this choice is made for ease of exposition and g, [6(y)] + 0 -v(g) =0 inQ x [0,T],
more general shallow water models can be used), v(¢) = —K(¢)O(y +2) inQx [0,T],
Y(-,0)=y¢° onQ,
h+ 0= (V) =) Na, v((w) .)nQ ~0 on(# UB) x [0,T),
whereh is the water depthg the dischargey; the ~ V({)-Nq = Vi-Ng on{(xt),xe .7},
rainfall intensity andv(y) - ng the source or sink ¢ =h on{(x,t),xe s},
term resulting from mass transfer between subsur-V({/) -nq =0 on{(x,t),xe 2%},
face and overland flows. The Manning—Strickler ¢ =0 on{(x,t),xe 2"},
;ggot;]n; J\I/(;\;\é:c:jrgttjrlla is used to link the discharge ah+dq= (VW) —v)-ng on.s x[0,T],
pth, h>0 on.7 x [0,T],
q= AhB/3S2, h(-,0) = h° on.#,
h(A,-) =0 atAx [0,T].

where % is the Strickler coefficient of roughness _ N
andSthe bottom slope. We also consider drains inThe coupling conditions are 1) the boundary con-
the subsurface and represent them with the followdition ¢ = h on the wet part of the interface’*
ing Signorini type condition, and 2) the source or sink temy) - ng in the mass
conservation of the overland flow.
Y<0, Vv()-ng>0 and Yv(Y) -ny =0,

wheren,, is the normal to the drain boundary point- 3.2. Discretization of the KW

ing inside the drain. The KW equation is discretized on the trace of the

. subsurface mesh on the interfage We use a finite
3.1. Notations volume scheme with Godunov flux and time step

g . L ot’ taken less than or equal to the time stipfor
The boundary of) is divided into four parts .7 is Richards’ equationdt’ — &t /rf with 1 > 1). This

h r part of th ndary where overland flow , —. . - .
the upper part of the boundary where overland flo choice is made because the explicit FV scheme is
can occur,” are lateral walls,Z represents the

lower part of the boundary ard are drains. restncted_ by a CFI__ cond|t!on wh|!e itis not the case
for the discrete Richards’ equation where a larger

A, time step can be employed. This leads to the fol-
lowing notation:hg’k for n < Ny andk < n’ denotes
the discrete approximation &f at time ndt + kot’

” and for brevity we writen? = h*® = A Letx;,

li, X1 andxi+% be defined on a generic mesh face
g on .7 respectively as the center, the length, and
the left and right vertices o (see Figure®)). N~
is the number of mesh faces coverigandS de-

Figure 6): Schematic of the computational domain. N0tes the slope of the faeg Since the flux function
g is convex and the water depth is nonnegative, the

At any timet, the set# is divided into “wet” and Godunov flux coincides with the upwind flux, yield-

“dry” parts .74t U #Wt, with ingVk<n', Vi <Ny,
S = {xe .7} h(xt) >0}, h b= bt
dt _ . _ ot/ ke 1k
I = {xe 7; h(x,t) =0}. +T(Q(hi[llJ( 1§ q) — gL 173))
Similarly, the set? is divided into “wet” and “dry” 5t/
parts2%t U 2", with +- vy StV Lkt ing, 1)
i Ja

gVt = {x e 2; P(x,t) =0},
dt t ) voon =0t where for alli < Ny,hi”vk = hn’k|a and V?;” is a
77 ={xe 7, (xt) <O} discrete interface flux yet to be defined (see383



hi_1 h o {]P, WP} — 1_BC(RY, TP, ") as
- the evaluation of the boundary condition gh

........ i X 1 v ~
A WS WP = (3R /3t +v;" 1) /2 on s P,
o wy® = A on 7P
I (/A b h )

Figure @): Space discretization at the interface.

o Y] Bic_BDF?(]ﬁ’n,ﬂ;\"n,a{?,w{b) as the
resolution of Richards’ equation on a time
step by the SIPG method, the second-order
BDF and boundary data o/ determined from
{70 7 ), o)},

Note that a fixed interface flux is used for the mul-
tiple time steps comprised in a single time step of
Richards’ equation. Equation (1) requires the know-
ledge of the water depth = 0 and to the left of the

first face on a fictitious cell at all discrete times, . v;r;p - Velocity(é":'n,éi‘)”’”,aﬂ,wﬂ,) as the

Vi <Ny, h?=ho(x), evaluation of the normal veIocity;’n on &
(= & or 9). For a faceF, this velocity is de-

nk _ pnk
vn< Ny, vk<n'—1,h"] = hy". fined as

The CFL condition for the explicit scheme (1) is *, . d,
p (1) Vi = o if F e 690,
o< min (12, Vo = V(le) Ng
SJi/hmax 1SI§N] / -1 n n . W.Nn
+ NKste (Y — )| if F € &7
wherehmay is ana priori bound forhon.# x [0, T].
In the absence of rainfall and coupling terms, the]’he expression fov*

L7 Lo P . ;" on &"" corresponds to the
satisfaction of the CFL condition implies a discrete | fthel (div. O formi
maximum principle and a decrease in the total variormal component of th (div, Q)-conforming ve-

. . locity reconstruction derived in [9] for DG methods.
ation for the discrete water depth.

Algorithm 1 Coupling algorithm
Require: gp—* andhp~*
Ay —xu(hl~ L,V 1,0)
Setp=0 andhz’O = ﬁg,
Setl,US’o| =0 andv;:”(; =0,

3.3. Coupling algorithm
3.3.1. Presentation

For simplicity in the presentation of our coupling
algorithm, we define

*,N

o N} — Kw(hgfl,n’,vnvh’ ) as the resolution of

the KW equation by using (Iy times, re%eit 1
° {ﬂhd’n’p,ﬂhw’n’p} — I_Part(hz’o,...,hg‘pfl) {jhd,n,p’jl;/v,n.p} <—I_Part(h2’0,...,h2’p_l)
as the partition of the interfac#, {@gﬂp’ @;V’n_,p} <—D_Part(l.[18’o, L w{,‘"”l)
I = (@ € Fy,IK< p—1,W* <0}, {P, P} — 1_BC(RY, 7P, 7 "P)
Jf;’”’”’p = fh\fh"’”’p, w{)"p — Ric_BDFQ(Jhd’n’p, fhw*"’p, wrP, wpP
where.#; is the set of faces located off, vyl VelOCitY(fhd’n’p, B AN RNA S
o (TGP D pare(f® Py velocity(7,"", 7'"7.0.0)
as the partition of the se?, b

h i xN, *,Nn—1
gWnp (e €7 wn,p| 0 h"™P|r = h"|¢ +5t/|FUF(2Vh}I}p+Vh',r} )/3
b T b Wy IR =

‘ untill-VFer,h"’pFZO
N,

and3k< p-—1, Vh |r >0}, 2.VE E-@hvvg:r;ph: >0
79" = T\ 7P, Ensure: ¢ = " andh) = h)"°

whereZ, is the set of faces located an,



3.3.2. Principle 3.3.3. Properties

1. Initial partition An important point is that our algorithm delivers
a) The water depth, predicted without subsurnonnegative surface water depths. Indeed, on the
face coupling term\(;’“ =0) and denotedhg, wet part of the interface, there holds
serves as a Dirichlet boundary condition for .

Richards’ equation. As the Godunov scheme ~ Yn<Nr, VFe 2" yjlr =hjlr,
satisfies a discrete maximum principl@ is _ : ] wn
nonnegative on the interface, so thgf ™ =@  Since the value of the Dirichlet dataj;” on 7"
w.nl is fixed during the loop. This is not the exact con-
and.# " = S _ tinuity of the pressures = h but an&’(dt) approx-
b) We assume that the hydraulic head and thg, vion of it. Furthermore, on the dry part of the

normal velocity are nul on the drains, so thatinten‘ace, the surface water depth is equal to zero

dnl wnl
Zy " =0andy " =9. ~and there holds
That is, we begin the iterations by assuming
that.# and 2 are totally wet. Yn<Nr, VFe j;i,n’ Wl < HQ\F-

2. Determination ofiy and h . o ) .
Again, this is an&’'(dt) approximation of the con-

Richards’ equation is solved and a first eSti'dition @ < 0. Furthermore, we observe that, if
ok NP = . 1 ’
mate of the normal veloiltyhj isusedto o given faces, the surface water depth"
evaluate the water dept]” as follows is zero as well as the upwind fluxes over the time
np - np  enl step [(n— 1)dt,ndt], the Neumann condition on
hPle = h'le + 5t/|F|/F(2V5J +Vy»)/3  Richards’ equation is equal to the rainfall intensity.

*x,n—1

The coupling term(2v;"}7 +v;",*) /3 is spe-  On the wet part o7, there holds
cially design to have overall mass conservation wn N
when the second-order BDF is used for time Vn<Nr, VFeZ, yylr=0

discretization of the Richards’ equation [6].
and on the dry part o, there holds

3. New partition and Neumann condition oA
a) The sign oh;” is then checked on the faces Vn<Nr, VFe .@S’", Vi glF =0.
of .#. If P is nonnegative on all faces, the _ _
partition can be accepted. Otherwise, a new*S Previously, we have only a@(6t) approxima-
partition of .# is determined and a Neumann tion of the conditionys < 0 on the dry part of7.

condition is enforced on those faces where th@oreover, we observe that in contrast to front track-
water depth is negative. This Neumann condijng schemes, our algorithm does not use any infor-
tion is evaluated in such a way that 1) the suryation from the previous time step to determine the
face water is completely infiltrated into the soil \yet portion of the interface. This offers the advan-
and 2) overall water volume conservation holdsiage of robustness and ease of extension to 3D/2D
true, so that for the BDF2, settings, but can entail higher computational costs
WP = _(3ﬁ?]/5t +v*’”’1)/2. than those incurred by front tracking schemes in the

_ D " absence of exfiltration (see for instance [4]).
b) The sign ot/ *Pis also checked on the faces . .
of 2. A Neumann condition is imposed on the We present here the main result concerning the over-

faces Where/;’r},j;p <0. all water volume cons_ervat_ion. L¥t" be the total
' volume of water contained in the coupled system at

4. Convergence time ndt defined as

The hydraulic head and the water depth are ac-

cepted as the solution to the coupled system if A :/ 8(yy) +/ hy,

the water depth is nonnegative on all faces of Q s

# and if the normal velocity is nonnegative on |g¢ F!) ., be the flux ovef(n—1)3t, ndt] across the

all faces of%. Convergence occurs since thepqtom the lateral walls and the drains,

setsf,?’”’p and 28" increase withp while

the sets#""? and 7" decrease. F) g = — wW— [ v
wuz  Jo 7



and letFzg, be the flux over(n— 1)dt,ndt] due to Vi - Ng| = 5mmirt

the rain and the discharge at points A and B, R
Fn t/ nz ( hn lk (hn 1, k) dl d2 d3 d4 i
ABr — ot 5 K . . 1?1
—./J/V?* 7k'”9)- 4m  8m 8m 8m  4m

The result concerning the overall water volume con- Figure (7): field with four drains.

servation is proven in [6].

Property Let 3V be the overall water volume de- We consider two initial conditions (IC) for testing
fect over the time stejpn — 1)3t,ndt] defined as ~ the response of the system,

~ . 0
5\/!’1 :Vn _anl _ (F;L@@ + FArJBr)5t7 IC1: LI] == —052,

- IC2: ¢°=—0.5(z—0.00532—x)).
whereF)), ,,, = 5F)) ., +3F) J,. LetAV" be the

overall water volume defect over the time intervalThe isolines ofy are horizontal for IC1 while they

[0,ndt] defined asAV" =5, 8V'. Then are parallel to the bottom for IC2. The water table
position is represented on Figure®,((9) and (L0)
1AV < %|5V1|+ncg7 at 1h, 1h15minand h30min.

where C is a constant anglis the user-defined tol-
erance in the resolution of the non-linear system.

3.4. Validation test case

We study a field with buried drainage pipes sub-
jected to a constant rainfall intensity equal to PR T S TR G
5mmh~1! as indicated on Figure7). The length,

the width of the domain and the slope of the inter- ~ Figure 8): water table position att

face and the bottom are respectivelyn82m and IC1 (up) and IC2 (bottom).

0.5%. The total simulation time ish3 The soil is
parametrized by the modified Van Genuchten’s laws
(see §2.3) with parameters,

6, =0 6s=0.43

Ks=2710%ms ! &=0.0094cm?

hs = 2cm n=113 TR T T T, ST, AT
m=0.115

Four drains (g, d, d3, ds), with a diameter equal to ~ Figure @): water table position attil5min
2cm, are located at@nabove the bottom, IC1 (up) and IC2 (bottom).

Cg, = (4m,17cm), cg, = (12m,13cm),
= (20m,9cm), cq, = (28m,5cm), m

wherecy is the center of draim (1 <i <4). The
drain boundaries are denotéd, 2,, 73 and Z4. A W
zero flux is imposed on the lateral walls and bottom,

w=0on#7UZx|[0,T].

Figure (L0): water table position atiBOmin
The Strickler coefficient? is set to 3on/3s 1. IC1 (up) and IC2 (bottom).



Figures 8), (9) and (L0) show that the water table
position strongly depends on the initial condition.
IC1 leads to different positions between two succes-
sive drains whereas IC2 leads to similar positions

7]

t3

t2

between two successive drains.

We also consider on Figuré®) and (L2) the outflow
over the time interval(n — 1) dt, ndt] on each drain,

. n
1<i<4, Mr,‘iz—pét/%va%,
and the total outflow of water

4
n n
M& - ZM_@I .
i=

0 0.5 1 15 2 25 3

Time [h]

Figure (L1): Water fluxes at the drains - IC 1.

Mass|kg]

0 0.5 1 15 2 25 3

Time [h]

Figure (L2): Water fluxes at the drains - IC 2.

fa

Figure (L3): Surface water depth at various times
(t = 1h40,t, = 1h47,t3 = 1h55 andt; = 3h).

The surface water depth (obtained with IC2) repre-
sented at various times on Figude shows that our
algorithm is able 1) to account for multiple exfiltra-
tion zones at the interface and 2) to connect these
wet zones.

3.5. Optimization

One drawback of Algorithm 1 is that two iterations
are necessary to evaluate the partition of the inter-
face when the surface water is totally absorbed by
the soil. For the test case previously presented, Fig-
ure (L4) shows the number of iterations to determine
the partition of the interface (note that a Dirichlet
condition is imposed on the drains and the parti-
tion of 7y is not considered here) and the number
of Dirichlet faces on the interface. It is clear that
two iterations are needed for infiltrating the water
until 1h40min.

o 1000 2000 3000 4000 5000 6000 7000

A difference of 8 minutes between two successive.., |

drains is observed on Figuré1) leading to a dif-

ference of 24 minutes between the first and the last |

drain. On the other hand, a complete synchroni-
sation is observed on Figurdd). These results
concerning the initial condition are particularly in-
terested. Isolines ofy parallel to the bottom are
more realistic than horizontal isolines because they °

match qualitatively experimental observations: a °

3000 4000 5000 6000 7000

similar water table evolution between two succecu-_ _ ] ]
tive drains and a synchronization of the fluxes acros§19ure @4): Number of iterations (top) - number of

the drains.

Dirichlet faces on#, (bottom) with Algorithm 1.



To reduce the number of iterations when a Neumanmax(t[l{;’0 #) > 0is not verified and there is no par-
condition is imposed on all the face_s of the interfaceiiion of the interface asz®"P — Jy. We assume
we propose an adaptation of Algorithm 1.

that the surface water is totaly infiltrated owing to
the Neumann condition}"” = —hj /8t. Two cases
are possible: either the water is effectively absorbed
in the soil or the water is not completely absorbed.

Algorithm 2 Coupling algorithm with the choice
of the interface partition

Require: ¢yt andhp~* In the first case (maxyp®|») < 0), only one iter-
A k(L 10 ation is necessary to converge (instead of two with
p KW (hy ™=, K ) Algorithm 1). In the second case (n"(w{;"ou) >
Setp=0 andhr,;’O = hg, 0), the algorithm swaps to the choice 1 because a
0 - artition of the interface is required.
SGHIJQ’ 7= LIJQ 1|__ﬁ, P q

Sety™|, = 0 andv*"? = 0, Figure (5) shqws the number of _iterations a_nd the

Wy"lz b2 number of Dirichlet faces on the interface with Al-

re;:)eat p+1 gorithm 2. As expected, the number of iterations
-

_ 1 is one until h40min. The same evolution in time
if max(yy™ 7|.») > Othen of the number of Dirichlet faces on the interface is
{j;’”{ fgv,n,p} <_I_part(h2’o7 . hz,p—l) obtained with Algorithm 1 and Algorithm 2. In this
_ case where there is a substantial period of time with-
d,n.p ,w,np n,0 n,p—1 p
{2752y D Part (Y™, g™ 7)ot surface runoff, Algorithm 2 allows to reduce the
{alP, ayPy — I_BC(ﬁg,ﬂhd’n’p,Jg‘”n’p) CPU time by a factor two.

WpP —Ric_BDF2(.70"P, 7P P, wf}P)
V;,?}p - Velocity(ﬂ,;j’n’p,fgv’n’p, d,p7w{,},p)
V;’n@’p — Velocity(@g’n’p, 9;"’”"370, 0)

VF e jf)’
WPl =l +0t/F | fe (0P + V5 /3 )
else

I = 7y and.7y""P = 0
{ 93’"")7 1P} —p_part( LIJQ’O, L wg\,p—l> e Ee me  we ww me e
WP = —hj /ot
WP —Ric_BDF2(S0"P, 7 P 6P wfP) |
V,*)’f;’jp — Velocity(@g’n’p, @;v,n,pp’ 0)
VF € .7, h"Ple =0
end if
until 1-VF € fh,hn"ph: >0

2-YF e %,V lF >0 .

Ensure: ) = ¢ andhf = hP e Ee ww ww weww e

) _ ) _ Figure (L5): Number of iterations (top) - number of
Algorithm 2 is based on two choices to impose the pirichlet faces onsj, (bottom) with Algorithm 2.
boundary conditions on the interface:

1. When there exists one face of the interface with a
Dirichlet condition at timg(n — 1)4Jt, the conditon CONCLUSIONS

n.o . . .

mr?;(% s 25 01s |mmed|t':1.tely venﬁe@ becaus_e We have presented a robust and accurate algorithm
Yy~ls = Yy s and a partition of the interface is to simulate coupled subsurface and overland flows

required. governed by Richards’ equation and the kinematic

2. When no face of the interface has a Dirich-wave equation. Special care was taken to design in-
let condition at time (n — 1)3t, the condition terface fluxes that preserve the overall water volume




in the system and that satisfy the various equality
and inequality constraints imposed at the interface
and around the drains. Additional hydrological test
cases (with heterogeneous soil for instance) should
be envisaged. Extension to two-dimensional sur-
face flows and three-dimensional subsurface vari-
ably saturated flows can also be considered. A fur-
ther possible extension is to account for the topog-
raphy evolution by means of the Exner equation.
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