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Abstract

The effects of uncertainty in hydrological laws are studied on subsurface flows modeled by Richards’ equation. The
empirical parameters of the water content and the hydraulic conductivity are considered as uncertain inputs of the
model. One-dimensional infiltration problems are treated and the influence of the variability of the input parameters
on the position and the spreading of the wetting front is evaluated. A Polynomial Chaos (PC) expansion is used to
represent the output quantities and permits to significantly reduce the number of simulations in comparison with a
classical Monte-Carlo method. A non-intrusive spectral projection supplies the coefficients of the PC decomposition.
Three test cases with different hydrological laws are presented and demonstrate that second order PC expansions are
sufficient to represent our quantities of interest owing to smooth dependences for the considered problems. Our results
show a correlation between the position and the spreading of the wetting front and an amplification of the input
uncertainty for all models. For each test case, five configurations with variable initial saturation state are investigated.
The global sensitivity analysis indicates that the relative influence of an input parameter changes according to the output
quantity considered and the initial saturation of the soil. The impact of the assumed distributions for the parameters is
also briefly illustrated.

Keywords: uncertainty quantification, global sensitivity analysis, Polynomial Chaos expansions, Richards’ equation,
non-intrusive spectral decomposition

1. Introduction

Water infiltration in soil is one of the key processes
in hydrology and have significant influence in many situ-
ations, such as for the determination of water table po-
sitions, the prediction of floods, and the quantification of
erosion risks. The more general model to describe air-
water flows in soil is a two-phase flow system which can
be simplified into the Richards’ equation (Richards (1931)
[44]) in non-deformable porous medium with constant air
pressure. This equation may be written in two formula-
tions depending on the selected unknown, the hydraulic
head (ψ) or the water content (θ). In this work, we con-
sider the formulation based on the hydraulic head which
can be used for saturated soil contrary to the water con-
tent formulation. Two constitutive relations character-
izing the soil hydrological behavior are needed to solve
the Richards’ equation: the water content (or the capil-
lary capacity when the non-conservative form is used) and
the hydraulic conductivity are functions of the hydraulic
head. The most classical constitutive relations were pro-
posed by Brooks and Corey (1964) [12] and Van Genuchten
(1980) [51]; other models were also proposed in Gard-
ner (1958) [22], Haverkamp et al. (1977) [26], Vogel et
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al. (2001) [52] and Assouline and Tartakovsky (2001) [5].
The four parameters for the water content are the residual
and the saturated water contents, a scaling factor related
to the air entry pressure head and an exponent related
to the pore-size distribution. Those for the conductivity
are the conductivity at saturation, a scaling factor gener-
ally equal to this used in the water content and an expo-
nent often depending of the exponent of the water con-
tent. These parameters can be either directly measured,
fitted to experimental data or determined from pedotrans-
fer functions. However these parameters are seldom ex-
actly known, justifying a stochastic description, due to
space heterogeneities, measurement inaccuracies and the
ill-posedness of inverse problems inherent in parameter es-
timation techniques (Kool et al. 1987) [32].

Several studies are devoted to uncertainty quantifica-
tion in subsurface flows. A common approach is to derive
deterministic equations for the mean and the variance of
the pressure (and the water content). For instance, Man-
toglou and Gelhar [37] propose a mean model representa-
tion for large-scale unsaturated flows. Tartakovsky et al.

treat the conductivity at saturation as a random field in
the steady case [49] and consider uncertain parameters as
random fields in the transient case [50]. Lu and Zhang
[36] study hydraulic properties with multimodal distribu-
tion. Some authors have investigated how progresses the
wetting front with uncertain hydraulic properties: Bresler
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and Dagan (1983) [11] and Protopapas and Bras (1990)
[42] in a single layer soil, Dillah and Protopapas (2000)
[18] in layered soils. Other types of study in a stochastic
context have also been done: Dostert et al. [19] consider
uncertain saturated conductivity for inverse problems and
Woodward et al. [54] realize a local sensitivity analysis
with correlated parameters, among others. The approach
based on the first two moments of pressure is unadapted
to risk managment which requires a determination of com-
plete pdfs (for example, to estimate the probability of
occurence of rare events). To this aim, Wang and Tar-
takovsky [53] obtain infiltration-rate pdfs by employing
simplified flows. Forster [21] consider a Polynomial Chaos
expansions (PCE) of the Richards equation with uncertain
permeability. In this work, we extend these studies to sin-
gle layer soils with uncertain hydraulic properties. While
previous studies used the Monte-Carlo (MC) method to
estimate the mean and the variance of the pressure head
(and the water content), we propose to construct PCE
(Ghanem and Spanos 1991) [23] for the position and the
spreading of the wetting front. The main interest in using
PCE, compared to MC methods, is that few input con-
figurations are sufficient to determine the expansion. In
addition, a complete characterization of the model out-
puts, including the mean, the variance and the sensitivity
indices, is directly derived from the expansion. High-order
moments and pdf’s can also be estimated using the PCE
by a classical sampling of the set of random events related
to the inputs.

The MC method is widely used in uncertainty quan-
tification. The principle of this method is to generate a
random sample set of events, to evaluate the model for
each element of this sample set, and to compute estimates
of moments, sensitivity indices or any statistical quantity
of interest from the set of model outputs. Although its
robustness, the application of the MC method to models
having high CPU time is often prohibitive as a large sam-
ple set is necessary to achieve well converged estimates.
Several strategies are possible to overcome this difficulty.
A first way consists in reducing the number of simula-
tions by using more efficient sampling methods, e.g. Quasi
Monte-Carlo methods (Moskowitz and Caflish 1996) [39]
and Latin hypercube sampling (Helton and Davis 2003)
[27]. Alternatively, to reduce the computational cost of
the MC method one can use models based on simplified
physics. For instance, the Green and Ampt model (1911)
[24] is a simplified form of the Darcy’s law, valid only for
the water infiltration in soil, and the infiltration transfer
functions can be used to replace the full Richards’ equation
(Besbes and De Marsily 1984) [9]. Some methods can even
rely on physics-free modeling techniques, through the con-
struction of meta-models, such as for the polynomial re-
gression and Gaussian process modeling (Sacks et al. 1989)
[45]. One has then to trade-off the construction cost of the
meta-model with its predictive capacity. In this work, we
use PCE because of its construction which require a fairly
low number of full-model simulations, whenever the model

outputs are sufficiently smooth with respect to the inputs.
Furthermore, the PCE furnishes a compact and convenient
representation of the outputs, containing all the informa-
tion on their variability and dependences with the inputs.
For example, sensitivity indices are readily obtained from
the PCE of the outputs (Crestaux et al. 2009). Different
approaches are possible to compute the PCE (Le Mâıtre
and Knio, 2010) [35], and we rely here on the Non Intrusive
Spectral Projection (NISP, Reagan et al, 2003) [43]. The
main advantage of the NISP is to reuse the deterministic
code as a “black box”. We apply the NISP methodology to
evaluate the effect of stochastic hydrological laws on sub-
surface flows. The parameters of the water content and
the conductivity are modeled as uniform and independent
random variables and the position and the spreading of
the wetting front are the output quantities of interest. We
investigate three test cases (TC) with Haverkamp’s, Van
Genuchten’s and Brooks–Corey’s relations.

The objective of this work is twofold. The first one is
to apply the NISP method for obtaining a reliable meta-
model demanding a low number of simulations. Several
tests are performed to assess the quality and accuracy of
the NISP-PCE through careful MC validations. The sec-
ond objective is to demonstrate the efficiency of the PCE
to conduct a priori global sensitivity analysis. To this end,
the influence of uncertain parameters is investigated on
three different test cases with several soil saturation states.
Regarding the methodology, the essential result concerns
the efficiency of the second order PCE to represent the
model outputs, the first moments and the pdf’s deduced
from the PCE being the same as those estimated via clas-
sical MC sampling. From the physical standpoint, the
sensitivity analysis evidences a significant correlation be-
tween the position and the spreading of the wetting front.
Moreover, the uncertainty on the parameters is shown to
have a large and non trivial impact on the shape and po-
sition of the wetting front. In particular, the degree of
saturation of the soil is shown to significantly affect the
wetting front position. The three models also amplify the
uncertainty, the coefficients of variation of the outputs be-
ing greater than those of the inputs. A global sensitivity
analysis (Sobol 1993 [47], Homma and Saltelli 1996 [28])
is employed to hierarchize the respective influences of the
uncertain parameters, which depend on the TC (physical
model), the soil saturation state and the assumed param-
eter distributions.

This paper is organized as follows. Section 2 introduces
the Richards’ equation and the constitutive relations. The
numerical method employed in a deterministic configura-
tion is described. Section 3 concerns the treatment of un-
certainty: the description of the stochastic modeling for
the uncertain inputs parameters, the construction of the
PCE for the model outputs and the characterization of its
variability (sensitivity analysis). Section 4 details the re-
sults for the three different TC with constitutive relations
presented in section 2. Finally, Section 5 summarizes the
main findings of this work and provides recommendations
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for the application of the proposed methodology to more
complex hydrological models.

2. The framework

2.1. Physical model

We are interested in a simplified model of air and water
subsurface flows in which the water is incompressible and
the air pressure is constant. The flow is described by the
Richards’ equation which is obtained by combining the
mass water conservation equation and the Darcy’s law and
whose the 1D conservative form is





∂t
(
θ(ψ)

)
− ∂x

(
K(ψ)(∂xψ + 1)

)
= 0 in ]0, L[×]0, T ],

ψ(x = 0, ·) = ψt and ψ(x = L, ·) = ψb on ]0, T ],

ψ(·, t = 0) = ψ0 on ]0, L[,

where ψ(x, t) [m] is the hydraulic head, θ(ψ) [−] the vol-
umetric water content, K(ψ) [m · s−1] the hydraulic con-
ductivity and x [m] the vertical coordinate. Let ]0, L[⊂ R

be the physical bounded domain and T the final time of
the simulation. The top and the bottom boundaries condi-
tions are respectively denoted by ψt and ψb and the initial
condition is ψ0. In our cases, water infiltration is gener-
ated by the top condition but a volumetric water source
or sink term [s−1] could be added on the right-hand side
of the equation.

Two constitutive laws ψ 7→ θ(ψ) and ψ 7→ K(ψ) are
necessary to close the model. To correctly describe the
hydrological behavior of a soil, these two relations contain
some parameters fitted to experimental measurements. Here,
we focus on the most commonly used relations suggested
by Haverkamp, Van Genuchten and Brooks and Corey. In
the following, θr and θs denote respectively the residual
and the saturated water contents and Ks is the saturated
conductivity. The Haverkamp’s relations (HR) are

θ(ψ) =
θs − θr

1 + |αψ|β + θr, K(ψ) =
Ks

1 + |Aψ|γ . (1)

The scaling factor α is the inverse of the hydraulic head
when the effective saturation θ̃ (defined as (θ − θr)(θs −
θr)

−1) is equal to one-half. The scaling factor A is the
inverse of the hydraulic head when the conductivity is half
of the saturated conductivity. The exponents β and γ
are the slopes of the log-log plots of (θ̃−1 − 1)(ψ) and
(KsK

−1 − 1)(ψ). The Van Genuchten’s relations (VGR)
are

θ(ψ) =
(θs − θr)(

1 + (ǫ|ψ|)β
)γ + θr,

K(ψ) = Ks

(
1− (ǫ|ψ|)β−1(1 + (ǫ|ψ|)β)−γ

)2
(
1 + (ǫ|ψ|)β

) γ
2

. (2)

The scaling factor ǫ is related to the inverse of the air
entry pressure, the exponent β is a measure of the pore-
size distribution and the exponent γ is defined as 1−β−1.

The Brooks–Corey ’s relations (BCR) are

θ(ψ) =





θs

(
ψ

ψa

)− 1

b

if ψ < ψa,

θs if ψ ≥ ψa,

K(ψ) =





Ks

(
ψ

ψa

)−γ

if ψ < ψa,

Ks if ψ ≥ ψa.

(3)

The scaling factor ψa is the air entry pressure head, the
exponent b is related to the pore-size distribution and the
exponent γ is defined as 2 + 3b−1.

In this work, we consider uncertain parameters except
the saturated and the residual water content which can
be easily obtained experimentally (Van Genuchten 1980
[51]). For each hydrological law, we define the vector d

associated to empirical and independent parameters and
whose the stochastic model is specified in subsection 3.1,

d = (α, β,Ks, A, γ) for HR,

d = (Ks, ǫ, β) for VGR,

d = (Ks, ψa, γ) for BCR.

2.2. Deterministic discretization

A discontinuous Galerkin (DG) method is chosen for
the space discretization of Richards’ equation because this
type of method ensure local conservation as finite vol-
umes (Manzini and Ferraris 2004) [38] and mixed finite
elements (Knabner and Schneid 2002) [31] and have high-
order accuracy as finite elements (Celia and Bouloutas
1990) [14] and mixed finite elements. Several DG meth-
ods can be applied for Richards’ equation and two-phase
flows in porous media especially the Local Discontinous
Galerkin (LDG) method (Fagherazzi et al. 2004 [20], Bas-
tian et al. 2007 [8]) and the non-symmetric or the symmet-
ric interior penalty Galerkin method (Klieber and Rivière
2006 [30], Bastian 2002 [7], Sochala et al. 2009 [48]). In
the present work, we prefer the LDG method whose the
fluxes are linear. Concerning time discretization, the usual
schemes employed with DG methods are explicit Runge-
Kutta (Cockburn and Shu 1998) [15] or diagonally implicit
(Bastian 2002) [7]. We propose instead to use backward
differentiation formula (BDF, Curtiss and Hirschfelder 1952)
[17] since this type of scheme have high-order accuracy,
avoid the CFL condition particularly restrictive for ex-
plicit schemes when diffusion term is present, and is more
efficient than implicit Runge-Kutta schemes for problems
where the nonlinear solver is expensive.

To approximate the Richards’ equation, we consider
the following mixed formulation which has the same fluxes
that those used for the Laplacian,

{
K(ψ)−1v(ψ) = −(∂xψ + 1),

∂t
(
θ(ψ)

)
+ ∂xv(ψ) = 0.

A formulation depending only on the primal variable ψ
is possible by a local elimination of the variable v (see
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Arnold et al. 2001 [4] for the bilinear form of the Lapla-
cian) and can be concisely written as the following semi-
discrete form,

ˆ

τ

∂t
(
θ(ψh)

)
ϕ+ aτ (ψh, ϕ) = bτ (ψh, ϕ),

where ψh is the space approximation of ψ, ϕ is a test
function, the form aτ represents the diffusive part and the
form bτ collects the contributions of the gravity and the
boundaries conditions. In this work, the degree of the
piecewise functions ψh and ϕ is equal to one. The unsteady
term is approximated by the second order BDF,

3

2δt

ˆ

τ

θ(ψnh )ϕ+ aτ (ψ
n
h , ϕ) ≃ bτ (ψ

n
h , ϕ)

+
1

δt

ˆ

τ

(
2θ(ψn−1

h )− 1

2
θ(ψn−2

h )
)
ϕ,

where ψnh denotes the value taken by ψh at time nδt. This
nonlinear equation is solved by a quasi-Newton method.
The discrete functions ψn−1

h and ψn−2
h being known, suc-

cessive approximations ψn,mh of ψnh are computed from

3

2δt

ˆ

τ

(
θ(ψn,mh ) + ∂ψθ(ψ

n,m
h )(ψn,m+1

h − ψn,mh )
)
ϕ

+ âτ (ψ
n,m
h , ψn,m+1

h , ϕ) = bτ (ψ
n,m
h , ϕ)

+
1

δt

ˆ

τ

(
2θ(ψn−1

h )− 1

2
θ(ψn−2

h )
)
ϕ.

The further argument added to the form aτ refers to the
following linearization

´

τ
K(ψn,mh )

−1
vn,m+1
h ϕ. For the first

time step, the Crank–Nicolson scheme is used. The conver-
gence criterion imposed that the relative Euclidean norm
of the component vector associated with δψn,mh is lower
than a user-defined tolerance (typically 10−4). The CPU
time for one simulation of our TC is several minutes.

3. Uncertainty quantification

3.1. Uncertainty model and PC expansion

We focus on the uncertainty propagation due to the
uncertain empirical parameters of the water content and
the conductivity. Each uncertain parameter in the con-
stitutive relations is modeled as a random variable, such
that following the notations of subsection 2.1 the input
vector d of size N (N = 5 for HR and N = 3 for VGR
and BCR) is random and defined on an abstract proba-
bility space P := (Ω,Σ, dµ), where Ω is the set of random
events, Σ a sigma-algebra and dµ a probability measure.
We denote d(ω) a realization of the random inputs. In or-
der to perform the global sensitivity analysis of the models
with respect to the uncertain parameter, we assume that
the components di, for i = 1, . . . , N , are mutually inde-
pendent random variables, each with uniform distribution
and equal coefficient of variation. Specifically, di(ω) has

a uniform distribution with unit probability to fall in the
range di(1± 0.1), where di is the expected value of di:

E [di] =

ˆ

Ω

di(ω)dµ(ω) := di.

In view of computing the PCE expansion of the model
outputs, the input vector is expressed in terms of N inde-
pendent standard random variables ξi all having uniform
distribution in the unit interval:

di(ω) = di(0.9 + 0.2ξi(ω)), ξi ∼ U [0, 1].

With a slight abuse of notation, we shall denote hereafter
d(ξ), ξ = (ξ1, . . . , ξN ), the random vector of parameters.
Since the ξi are independent, their joint probability density
function factorizes to

pξ(ξ1, . . . , ξN ) =

N∏

i=1

pU [0,1](ξi),

pU [0,1](ξ) =

{
1 ξ ∈ [0, 1],

0 otherwise.

Let us denote y a model output. Because the Richards’
model is deterministic for given realization of the input
vector d(ξ) the output is seen as functional of ξ, denoted
y(ξ). We assume that the random output y is a second-
order random variable,

E
[
y2
]
=

ˆ

Ξ

y(ξ)2pξ(ξ)dξ < +∞,

where Ξ := [0, 1]N . The PCE of y(ξ), truncated at order
p is written as

y(ξ) ≈ ŷ(ξ) :=
∑

k∈K(p)

ykφk(ξ),

where k ∈ N
N is a multi-index, K(p) the set of multi-

indexes for order p, {yk} is the set of deterministic PC
coefficients (or spectral modes) of y and the random func-
tionals φk are orthogonal polynomials such that

E [φkφl] =: 〈φk, φl〉 =
ˆ

Ξ

φk(ξ)φl(ξ)pξ(ξ)dξ = δkl 〈φk, φk〉 .

For the total degree truncation, the multi-index set is de-
fined as

K(p) =

{
k ∈ N

N ,

N∑

i=1

ki ≤ p

}

The Cameron and Martin theorem [13] states the conver-
gence of the PCE in the mean-squared sense for p → ∞.
The set {φk, k ∈ K(p)} forms the PC basis whose dimen-
sion P +1 is related to N and truncature order p through
P + 1 = card K = (p + N)!/(p!N !). In fact, the stochas-
tic polynomials φk are simply products of one-dimensional
Legendre polynomials Lj defined on the unit interval:

φk(ξ) =

N∏

i=1

Lki(ξi), k ∈ K(p).
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Finally, we observe that the previous PCE can be con-
structed for other types of distributions for the ξ, provided
its components remain independent, leading to other fam-
ilies of polynomials, see e.g. (Xiu and Karniadakis 2002
[55]) and (Le Mâıtre and Knio, 2010 [35]). Also, the ran-
dom vector d may have a distribution different than for ξ,
by introducing a non-linear transformation ξ 7→ d(ξ). For
example, to deal with log-normal distributions for the sat-
urated hydraulic conductivity, as in Dillah and Protopapas
(2000) [18], one would use standard normal Gaussian ξ and
an exponential transformation.

3.2. Non intrusive spectral projection

Different means can be use to determine the PC-coefficients
yk in the PCE of y(ξ). In this paper, we rely on the non
intrusive spectral projection (NISP) method, (see Reagan,
2003 [43], Le Mâıtre and Knio, 2010 [35]) which corre-
sponds to a definition of ŷ as the L2-orthogonal projection
of y(ξ) on the subspace spanned by the {φk}. One ad-
vantage of this approach is that it is non-intrusive, in the
sense that deterministic codes can be reused as black-box
without any adaptation. This feature is particularly ap-
pealing here because of the non-linearities of the Richards’
equation that would require specific treatments for the im-
plementation of an intrusive stochastic Galerkin method.

NISP exploits the orthogonality of the basis. Indeed

y(ξ) =
∑

k∈NN

ykφk(ξ) ⇒ 〈y, φk〉 =
∑

i∈NN

yi 〈φi, φk〉

= yk 〈φk, φk〉 , ∀k ∈ N
N .

The normalization factor 〈φk, φk〉 corresponds to the squared
norm of the polynomial φk and is known analytically from
the definition of the Legendre polynomials (Abramowitz
and Stegun, 1970) [1]. Therefore, the determination of the
coefficients yk amounts the evaluation of N -dimensional
integrals which can be approximated by numerical cuba-
ture,

〈y, φk〉 =
ˆ

Ξ

y(ξ)φk(ξ)pξ(ξ)dξ ≃
Np∑

j=1

wjy(xj)φk(xj),

where the Np integration points xj and associated weights
wj define the cubature rule. Since the integration is N -
dimensional, with N potentially large, full-tensorization
of one-dimensional quadrature rules (e.g. Gauss’ quadra-
tures) are prohibitively costly and sparse cubature rules,
based on Smolyak’s formula (see Appendix A), are used
in this work. The number of cubature points then depends
on the level of the cubature formula, which in turn yields
a formula which integrate exactly polynomial up to a cer-
tain degree. Therefore, the level of the cubature formula
for the numerical integration depends both on the trun-
cature order selected for the PCE and on the quantity of
interest y. A minimal requirement for the selection of the

cubature level is that it verify the discrete orthogonality
condition

Np∑

j=1

wjφi(xj)φk(xj) = 〈φi, φk〉 δi,k, ∀i, k ∈ K(p).

However, complex quantities of interest with non-polynomial
dependences may require richer cubature rules, i.e. higher
level, to accurately compute the correlations between y
and the set of φi in its approximation.

3.3. Statistic estimators

A particularly attractive feature of the PCE is the eas-
iness to recover information and characterize the variabil-
ity, in particular the mean, the variance and the Sobol
indices of a quantity of interest. We adopt the common
convention that the zero order polynomial, equal to 1, is
denoted φ0. Thus, the mean µ(y) of y is simply the coef-
ficient y0,

µ(y) = 〈y, 1〉 =
∑

k∈K(p)

yk〈φk, φ0〉 ⇒ µ(y) = y0.

Likewise, using the orthogonality of the polynomials, the
variance σ2

PC(y) is estimated from its PCE approximation
through

σ2(y) = 〈(y − y0), (y − y0)〉 ≈ 〈(ŷ − y0), (ŷ − y0)〉

=

〈( ∑

k∈K(p)\0

ykφk

)
,
( ∑

l∈K(p)\0

ylφl

)〉

=
∑

k,l∈K(p)\0

ykyl〈φk, φl〉

=
∑

k∈K(p)\0

y2k〈φk, φk〉.

The Sobol indices, which express the part of the variability
due to each input parameter (or group of input parame-
ters), are obtained immediately from the PCE (Crestaux
et al. 2009 [16]). In particular, the first order sensitivity
index for the input parameter associated to ξi, denoted
Si, is the conditional variance σ2

i (ŷ) divided by the total
variance σ2(ŷ),

Si =
σ2
i (ŷ)

σ2(ŷ)
, with σ2

i (ŷ) =
∑

k∈Ki

y2k〈φk, φk〉,

where Ki is the set of the multi-indices such that

Ki :=

{
k ∈ K(p), kj =

{
> 0, j = i

0, j 6= i.

}
.

To estimate the pdf or high-order moments of the PCE
of y(ξ), we use MC method for generating a sample set
of quantity of interest, YPC =

{
ŷ(1), . . . , ŷ(M)

}
where M

is the sample set dimension and ŷ(i) denotes the value of
ŷ at samples ξ(i) drawn at random. We stress that to
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generate YPC one needs not to solve the original model,
but simply to evaluate the PCE ŷ(ξ) at the ξ(i). The pdf
of ŷ is then estimated using the Gaussian kernel density
estimator (Bowman and Azzalini 1997 [10]),

pη(y) =
1

Mη

M∑

m=1

G

(
y − ŷ(m)

η

)
, G(x) =

1√
2π
e

(

− x2

2

)

.

The parameter η must be fittingly chosen to avoid spurious
oscillations (if η is too small) and excessive smoothing (if
η is too large).

For the purpose of PCE validation, we shall also com-
pare moments and pdf’s based on the PCE with those
determined by classical MC method. Using the same sam-
ples ξ(i), the corresponding MC sample set of quantity of
interest is YMC =

{
y(1), . . . , y(M)

}
, whose generation re-

quires solvingM times the Richards’ equation. In particu-
lar, the PCE and MC sample sets will be used to estimate
the normalized l2-error denoted e and defined as

e = E
[
(y − ŷ)2

]
/E

[
y2
]
.

The MC estimator of this error is

e2 ≈
∑m

i=1

(
y(i) − ŷ(i)

)2
∑m

i=1

(
y(i)

)2 .

4. Results

We consider 1D downward infiltration problems with
hydrological laws presented in subsection 2.1. We focus on
the position and the spreading of the wetting front as the
quantities of interest in the analysis. The wetting front po-
sition xf is defined as the location of the half-sum value ψf

of the minimal and maximal hydraulic head in the domain.
For the present simulations, the hydraulic head varying
monotonically (almost surely) in space, such that these
extreme values are observed at the boundaries and, using
our notations, it comes

xf := ψ−1
h (ψf), ψf =

1
2 (ψb + ψt).

Similarly, the spreading of the wetting front, sf , is uniquely
defined as the spatial extend of the domain where the hy-
draulic head takes value in the centered 90% range of vari-
ation. It has for expression

sf = |ψ−1
h (ψ0.05)− ψ−1

h (ψ0.95)|, ψk = ψb + k(ψt − ψb),

k = 0.05 or 0.95. The two quantities of interest are schemat-
ically illustrated in Fig. 1. Furthermore, the position mostly
characterizes water advection process, while the spreading
is related to water diffusion process in the soil.

ex

−
−

h

L

ψb = ψ0

ψt > ψ0

x

•

×

×

ψb

ψf

ψt−

−

−

|

xf

sf

Figure 1: left: Basic notations; right: quantities of interest
of the wetting front.

4.1. Test case 1

4.1.1. Test case description

The first TC was proposed by Haverkamp et al. (1977)
[26]. The soil consists of sand and has properties modeled
by (1),

θ(ψ,d(ξ)) =
θs − θr

1 + |α(ξ1)ψ|β(ξ2)
+ θr,

K(ψ,d(ξ)) =
Ks(ξ3)

1 + |A(ξ4)ψ|γ(ξ5)
,

with deterministic parameters θs = 0.287 and θr = 0.075.
The vector d = (α, β,Ks, A, γ) of the random param-
eters has components di having a uniform distribution
di(ξi) = di(0.9 + 0.2ξi), ξi ∼ U [0, 1], 1 ≤ i ≤ 5 , with
respective mean values α = 0.0271cm−1, β = 3.96, Ks =
9.44 · 10−3cm.s−1, A = 0.0524cm−1 and γ = 4.74. It cor-
responds to the ranges of variations for the water content
parameters

α ∈ 10−2 · [2.44, 2.98], β ∈ [3.56, 4.36],

and for the conductivity parameters

Ks ∈ 10−3 · [8.47, 10.38], A ∈ 10−2 · [4.72, 5.76],

γ ∈ [4.27, 5.21].

The coefficient of variation cv (= σ/µ) of this probabil-
ity distribution is equal to 5.8%. The resulting variability
in the water content and conductivity can be appreciated
from Fig. 2, which depicts them as functions of the hy-
draulic head. The black lines correspond to the models for
the mean value of d, while the gray shadow corresponds to
the models for 500 random realizations of d. The length of
the domain is L = 80cm, the final time is T = 600s, and
the boundary and initial conditions are ψb = −61.5cm,
ψt = −20.7cm, and ψ0(x) = ψb. Preliminary simulations
have shown satisfying convergence of the deterministic dis-
crete approximation for a mesh size h = 0.25cm and a time
steps δt = 12s. These discretization parameters are kept
fixed in subsequent simulations.
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Figure 2: TC1 - Soil properties obtained for d (black) and
500 random samples of d (gray).

4.1.2. Validation of PCE and first moments analysis

First moments (mean µ, standard deviation σ and skew-
ness s) computed by MC using three sample sets of increas-
ing dimension and PCE up to P3 are reported in Tab. 1.
The number of simulations Nsim corresponds to the sam-
ple sets dimension M for the MC method and the number
of integration points Np for the PCE (see subsection 3.2).
In the PCE computation, the projection uses the cuba-
ture formula with minimal level to ensure the orthogonal-
ity condition for the considered PC order. We observe that
the two approaches agree for sufficiently large sample set
dimension (MC) and PCE order. However, it is seen that
MC requires a much larger number of simulations. Fig. 3
presents the MC estimate of the mean and the standard
deviation of the position with ±3 bootstrap error. A min-
imum of 104 MC realizations is necessary to consider the
convergence (the number of simulations is identical for the
spreading). On the contrary, PCE requires less than 200
simulations. Polynomial degrees equal to 2 or 3 permit
to finely obtain the first three moments. The normalized
l2-error e (see subsection 3.3) is also provided in the ta-
ble, showing that PC - P2 yields an error < 1% on the
quantities of interest.

In Fig. 4a and 4b, we compare the pdf’s of xf and sf
using the MC method and PC - P1: the difference between
the curves is due to the non linear dependences neglected
in PC - P1. We also observe the symmetric character of
the pdf’s, which explain the zero skewness reported for
PC - P1. For PC - P2, the pdf’s in Fig. 4c and 4d com-
pare well with the MC estimates, confirming the results
of Tab. 1. Considering these results, the PC - P2 is used
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Figure 3: TC1 - Convergence of the MC estimate of µ(xf)
and σ(xf ) with ±3 bootstrap error.

in subsequent analyses of this section. We recall that this
expansion requires 51 simulations only.

Table 1: TC1 - moments and normalized error of the quan-
tities of interest xf and sf .

xf sf
Nsim µ σ s e µ σ s e

- cm cm cm % cm cm cm %

MC 103 22.19 3.27 0.21 15.02 3.13 0.50

MC 104 22.29 3.27 0.20 15.14 3.10 0.46

MC 105 22.32 3.27 0.19 15.14 3.10 0.48

PC - P1 11 22.34 3.23 0.00 1.30 15.15 3.03 0.00 2.89

PC - P2 51 22.33 3.27 0.20 0.14 15.14 3.10 0.47 0.37

PC - P3 151 22.34 3.27 0.19 0.09 15.15 3.10 0.48 0.07

Fig. 5 presents 104 realizations of the PC - P2 couples
(xf , sf) with three isolines of the joint pdf. An interest-
ing observation is that the position and the spreading are
rather well-correlated. Indeed, the correlation coefficient
r, defined as the covariance of the two variables divided
by the product of their standard deviation, is equal to
0.81 meaning that 66% of the dispersion of the scatter
is due to a linear relation between the two output quan-
tities. Moreover, the slope of the regression line (0.78)
is positive, denoting an increasing front spreading as the
front displacement velocity increases. This is illustrated
on the top plot of Fig. 6 where the profiles of the pressure
corresponding to the extreme values of xf (over the PCE
sample sets) are represented. The profiles corresponding
to the extreme values of sf are almost identical to those for
the extreme xf , owing to the strong correlation. The three
isolines of the joint pdf localize iso-probabilistic events as-
sociated to the first decile, the median and the last decile.
This plot highlights the skewed character of the joint dis-
tribution, with longer tails toward larger values.

4.1.3. Effect of soil saturation

To study the effect of the soil saturation state on the
wetting front, we consider five couples (ψb, ψt) with con-
stant difference ψb − ψt = −40.8cm. We recall that the
initial condition is ψ0(x) = ψb. The computations are
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Figure 4: TC1 - pdf’s of xf and sf obtained with MC (solid
line) and PCE (dotted line), η = 1.

performed with PC - P2. Tab. 2 reports the statistic es-
timators for each configuration. The coefficient of deter-
mination R2 (equal to the square of the correlation coef-
ficient r) is also reported. As expected, the increasing of
the top and initial conditions augments the mean of the
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Figure 5: TC1 - top: 104 PC - P2 realizations of (xf , sf);
bottom: isolines of the joint pdf.

position because the water velocity is proportional to the
conductivity according to the Darcy’s law. Here, the mean
value of the spreading also rises since the increasing of the
saturation accentuates the diffusion process. Indeed, the
modification of the pressure profile is illustrated on the
bottom plot of Fig. 6 where the hydraulic head for d is
plotted for each values of the boundary conditions. The
mean front position and spreading raise with the satura-
tion. However, the variation of each output is essentially
the same for all the saturation states. Also, the model
amplify the uncertainty since the coefficient of variation of
the outputs are greater than those of the inputs. At last,
the coefficients of determination reveal that a significant
part of the dispersion (60% on average) is explained by a
linear relation.
The first order sensitivity indices are plotted on Fig. 7.
In the following, the index Sqp(ψr) corresponds to the pa-
rameter p and concerns the quantity of interest q when
the top condition is ψr. We first observe that for all
the saturation states, the sum of the first order indices
is close to 1, meaning low interactions between param-
eters and an essentially additive model for the quanti-
ties of interest. For the position, the exponents β and
γ have no influence. When the saturation is increased, the
more influent parameter is successively A,Ks and α with
Sxf

A (−20.7) = 0.84, Sxf

Ks
(−10) = 0.40 and Sxf

α (0) = 0.60.
So, the front displacement is governed by α when the top
of the column is close to the saturation (ψt ≥ −5cm) and
by A when the soil is far from saturation (ψt ≤ −15cm).
For the spreading, the parameter A is mainly determi-
nant, except for the more saturated configuration for which
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Figure 6: TC1 - top: Pressure corresponding to the ex-
treme values of xf ; bottom: Pressure obtained with d for
the five saturation states reported in Tab 2.

Ssfα (0) = 0.46 is the highest index. To summarize, the pa-
rameter A is the more determinant far from saturation,
while α is overtaking close to saturation. At intermediate
saturation,Ks is also seen to be significant, although being
dominant (for the front position) in only one configuration.

Table 2: TC1 - Moments of the quantities of interest using
PC - P2 for five saturation states.

xf sf
ψ0 ψt µ σ cv µ σ cv R2

cm cm cm cm % cm cm % %

−61.5 −20.7 22.33 3.27 15 15.14 3.10 20 66

−55.8 −15 34.84 3.33 10 18.49 3.82 21 58

−50.8 −10 46.82 3.23 7 30.33 4.55 15 43

−45.8 −5 57.61 4.01 7 48.02 4.04 8 61

−40.8 0 68.73 5.12 7 64.05 3.87 6 74

4.2. Test case 2

4.2.1. Test case description

The second TC was proposed by Celia and Bouloutas
(1990) [14]. The soil corresponds to a field in New Mexico
with properties modeled by (2),

θ(ψ,d(ξ)) =
(θs − θr)(

1 + ζβ(ξ3)
)γ + θr,

and

K(ψ,d(ξ)) = Ks(ξ1)

(
1− ζβ(ξ3)−1(1 + ζβ(ξ3))−γ

)2
(
1 + ζβ(ξ3)

) γ
2

,
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Figure 7: TC1 - First order sensitivity indices using PC -
P2 for five saturation states.

where ζ = ǫ(ξ2)|ψ|. The deterministic parameters are θs =
0.368 and θr = 0.102. The random parameters vector
d = (Ks, ǫ, β) has components di uniformly distributed
with ±10% range and respective mean values Ks = 9.22 ·
10−3cm.s−1, ǫ = 0.0335cm−1, β = 2 and γ = 1− β

−1
. It

corresponds to the ranges of variations

Ks ∈ 10−3 ·[8.30, 10.14], ǫ ∈ [0.03, 0.037], β ∈ [1.8, 2.2].

The resulting variability in the water content and con-
ductivity can be appreciated from Fig. 8, which depicts
them as functions of the hydraulic head. The length of
the domain is L = 2m, the final time is T = 1h, and the
boundary and initial conditions are ψb = −10m, ψt =
−75cm, and ψ0(x) = ψb. Preliminary simulations have
shown satisfying convergence of the deterministic discrete
approximation for a mesh size h = 0.1cm and a time steps
δt = 1min. These discretization parameters are kept fixed
in subsequent simulations.

4.2.2. Validation of PCE and first moments analysis

First moments computed by MC using three sample
sets of increasing dimension and PCE up to P3 are re-
ported in Tab. 3. We observe that the two approaches
agree for sufficiently large sample set dimension (MC) and
PCE order. Moreover, MC requires a much larger number
of simulations because a minimum of 103 MC realizations
is necessary to consider the convergence, while PCE re-
quires less than 40 simulations. As for TC1, the PCE
requires a polynomial degree equal to 2 or 3 to correctly
estimate the first three moments. The reported normalized
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Figure 8: TC2 - Soil properties obtained for d (black) and
500 random samples of d (gray).

l2-error e indicates that contrary to TC1, a larger cuba-
ture formula level is required to ensure decay of e, due
to cubature errors. It is however observed that the first
moments are not significantly affected by this integration
error. Further numerical experiments (not shown) have
demonstrated that using two additional levels was enough
to recover monotonic decay of the l2-error, though without
noticeable changes in the computed first moments. Con-
cerning the pdf’s, not represented here, the findings are
identical to TC1: PC - P1 and MC pdf’s are close and the
difference due to the non linear dependences is reduced
with PC - P2, which requires 19 simulations only and is
used in the remainder of this section.

Table 3: TC2 - moments and normalized error of the quan-
tities of interest xf and sf .

xf sf
Nsim µ σ s e µ σ s e

- cm cm cm % cm cm cm %

MC 102 10.09 1.20 −0.07 3.03 0.59 −0.16

MC 103 9.81 1.20 0.15 2.95 0.60 0.07

MC 104 9.86 1.20 0.16 2.96 0.60 0.09

PC - P1 7 9.87 1.20 0.00 0.82 2.98 0.58 0.00 1.84

PC - P2 19 9.87 1.20 0.18 0.31 2.96 0.61 0.16 1.49

PC - P3 39 9.87 1.21 0.16 0.31 2.98 0.60 0.03 2.02

Fig. 9 presents 104 realizations of the PC - P2 couples
(xf , sf) with three isolines of the joint pdf and shows a
better correlation between the position and the spreading
than for the previous test case. Here, the correlation coef-

ficient is equal to 0.91 implying that 83% of the dispersion
of the scatter is caused by a linear relation between xf and
sf . The slope of the regression line (0.45) is smaller than
this of TC1 because the front is more stiff as illustrated
by the top part of Fig. 10. As for TC1, the profiles corre-
sponding to the extreme values of sf are almost identical
that those for xf . The isolines of the joint pdf highlight
again the dissymmetry of the distribution.
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Figure 9: TC2 - top: 104 PC - P2 realizations of (xf , sf);
bottom: isolines of the joint pdf.

4.2.3. Effect of soil saturation

We study the effect of the soil saturation state on the
wetting front by considering five couples (ψb, ψt) with con-
stant difference ψb−ψt = −9.25m. The computations are
performed for PC - P2. The first moments are reported
in Tab. 4. As previously, increasing the initial saturation
(ψ0) leads to higher mean front position, in agreement
with the Darcy’s law, but unlike TC1 no impact of the
saturation on the mean spread is observed. This is due to
the shape of the front which remains stiff for all the soil
saturation considered. This is clearly illustrated on the
bottom plot of Fig. 10. Another difference with TC1 is
the large changes in the position standard deviation σ(xf )
for the five saturations. This sensitivity of the variability
in xf depending on the saturation causes a drastic change
in the correlation between xf and sf . Specifically, the co-
efficients of determination goes to zero as the saturation
increases, as reported in the last column of Tab. 4, and
illustrated in the scattered plots shown in Fig. 11. As for
TC1, the uncertainty is amplified by the model, the coeffi-
cients of variation of the outputs being greater than those
of the inputs.
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Figure 10: TC2 - top: Pressure corresponding to the ex-
treme values of xf ; bottom: Pressure obtained with d for
the five saturation states reported in Tab 4.

Table 4: TC2 - Moments of the quantities of interest using
PC - P2 for five saturation states.

xf sf
ψ0 ψt µ σ cv µ σ cv R2

cm cm cm cm % cm cm % %

−1025 −100 7.09 0.91 13 2.62 0.59 23 85

−1000 −75 9.87 1.20 12 2.96 0.61 21 83

−975 −50 15.83 1.65 10 3.06 0.60 20 50

−950 −25 34.62 3.60 10 2.63 0.48 18 1

−930 −5 104.63 8.96 9 2.90 0.31 11 2

First order sensitivity indices are plotted in Fig. 12. Again,
the two quantities of interest are found to be essentially
additive models with low parameter interactions. For the
position, the more influent parameter is ǫ in all cases ex-
cept for the more saturated one where β becomes domi-
nant. For the spreading, on the contrary, the exponent β is
predominant, except for the most saturated configuration
where ǫ takes over. The sensitivity analysis also reveals
that the conductivity at saturation has only a weak impact
of the front variability. Moreover, additional analysis for a
deterministic water content law using θ(ψ,d) and random
conductivity has shown that the uncertainty in K(ψ,d(ξ))
is here responsible for essentially all the variability in the
quantities of interest.

(a) (−1025,−100) (b) (−975,−50)

(c) (−930,−5)

Figure 11: TC2 - 104 PC - P2 realizations of (xf , sf) for
three initial saturations. The realizations are centered and
normalized.
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Figure 12: TC2 - First order sensitivity indices using PC
- P2 for five saturation states.

4.3. Test case 3

4.3.1. Test case description

The third TC was proposed by Baca et al. (1997) [6].
The soil corresponds to a tilled layer modeled by (3),

θ(ψ,d(ξ)) =





θs

(
ψ

ψa(ξ2)

)− 1

b

if ψ < ψa(ξ2),

θs if ψ ≥ ψa(ξ2),
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and

K(ψ,d(ξ)) =





Ks(ξ1)

(
ψ

ψa(ξ2)

)−γ(ξ3)

if ψ < ψa(ξ2),

Ks(ξ1) if ψ ≥ ψa(ξ2).

The deterministic parameter is θs = 0.562. The ran-
dom parameters vector d = (Ks, ψa, γ) has components
di uniformly distributed with ±10% range and respective
mean values Ks = 3.87 · 10−4cm.s−1, ψa = −4.55cm and
γ = 2.23. It corresponds to the ranges of variations

Ks ∈ 10−4 · [3.48, 4.26], ψa ∈ [−5,−4.1], γ ∈ [2, 2.45].

Furthermore, the exponent b is taken constant and equal
to 3(γ− 2)−1, assuming a fixed pore-size distribution. For
this choice, the variability of the water content depends
only on ψa, so the analysis focuses mainly on the uncer-
tainties in the conductivity lawK as illustrated on Fig. 13.
The length of the domain is L = 50cm, the final time
is T = 1h, and the boundary and initial conditions are
ψb = −1m, ψt = 0, ψ0(x) = ψb. Preliminary simulations
have shown satisfying convergence of the deterministic dis-
crete approximation for a mesh size h = 0.5cm and a time
steps δt = 2min. These discretization parameters are kept
fixed in subsequent simulations.
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Figure 13: TC3 - Soil properties obtained for d (black)
and 500 random samples of d (gray).

4.3.2. Validation of PCE and first moments analysis

Tab. 5 reports the first moments computed by MC us-
ing three sample sets of increasing dimension and PCE
up to P3. The two approaches agree for sufficiently large
sample set dimension (MC) and PCE order. MC requires a

minimum of 103 realizations while PCE requires less than
40 simulations. As for TC1 and TC2, the PCE requires
a polynomial degree equal to 2 or 3 to correctly estimate
the first three moments. As for TC2, a larger cubature
formula level is required to ensure decay of e (not shown).
The detailed comparison with MC reveals that PC - P2

provides a well-converged approximation, so this order is
used in the following of this section.

Table 5: TC3 - moments and normalized error of the quan-
tities of interest xf and sf .

xf sf
Nsim µ σ s e µ σ s e

- cm cm cm % cm cm cm %

MC 102 22.27 1.09 0.37 6.35 1.35 0.31

MC 103 22.36 1.15 0.05 6.41 1.25 0.32

MC 104 22.33 1.16 0.08 6.40 1.28 0.32

PC - P1 7 22.32 1.16 0.00 0.18 6.41 1.26 0.00 2.17

PC - P2 19 22.32 1.16 0.07 0.05 6.39 1.29 0.34 0.63

PC - P3 39 22.32 1.16 0.05 0.07 6.39 1.30 0.29 0.93
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Figure 14: TC3 - top: 104 PC - P2 realizations of (xf , sf);
bottom: isolines of the joint pdf.

Fig. 14 presents 104 realizations of the the PC - P2

couples (xf , sf) with three isolines of the joint pdf. As pre-
viously, the scatter indicates that the more the velocity
front increases, the more the front spreads as illustrated
on the top plot of Fig. 15. Again, the position and the
spreading are significantly linearly correlated with a cor-
relation coefficient equal to 0.69 (R2 = 48%).
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Figure 15: TC3 - top: Pressure corresponding to the ex-
treme values of xf ; bottom: Pressure obtained with d for
the five saturation states reported in Tab 6.

4.3.3. Effect of soil saturation

As previously, the impact of the initial saturation is
analyzed by testing five couples (ψb, ψt) with constant dif-
ference ψb−ψt = −1m. The first moments computed from
PC - P2 are reported in Tab. 6. As for TC1 and TC2, the
mean of the position increases with the saturation. The
bottom plot of Fig. 15 shows that the shape of the front for
the average parameters values is not affected by the soil
saturation. This explains that increasing the top boundary
condition weakly impact the mean of the spreading com-
paring to TC1. Regarding standard deviations of the front
position, it is found that the variability is weakly impacted
by the saturation in contrast with TC2. As previously, an
amplification of the input uncertainty is observed. At last,
the coefficients of determination reveal a significant corre-
lation between the position and the spreading, which tends
to decay with the initial saturation, as for TC2, except for
ψt = −100 where the threshold head ψa is reached.
The first order sensitivity indices are plotted on Fig. 16.
For the position, when the saturation is increased, the
more influent parameter depends on the soil saturation
and is successively γ, ψa and Ks with Sxf

γ (−10) = 0.63,
Sxf

ψa
(−5) = 0.66 and Sxf

ψs
(0) = 0.57. For the spreading, the

exponent is always the most influent although for the most
saturated state the second influent parameter becomes sig-
nificant with Ssfψa

(0) = 0.47, due to threshold effect as ex-
plain previously. Again, the influence of the conductivity
at saturation increases with the saturation for the position
and is negligible for the spreading.

Table 6: TC3 - Moments of the quantities of interest using
PC - P2 for five saturation states.

xf sf
ψ0 ψt µ σ cv µ σ cv R2

cm cm cm cm % cm cm % %

−120 −20 5.99 0.90 15 6.97 1.35 19 98

−115 −15 7.06 0.99 14 7.14 1.36 19 96

−110 −10 8.95 1.12 12 7.00 1.31 19 89

−105 −5 14.81 1.54 10 4.82 1.04 22 28

−100 0 22.32 1.16 5 6.39 1.29 20 49
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Figure 16: TC3 - First order sensitivity indices using PC
- P2 for five saturation states.

4.4. Effect of saturated conductivity distribution

The conclusion regarding the respective influence of the
model parameters depends on the assumed distribution.
To illustrate this aspect we repeat the analyses above but
for a saturated conductivity having a log-uniform distribu-
tion with higher variability than previously, the distribu-
tions of the other parameters being kept constant. Specif-
ically, we assume for Ks a log-uniform distribution over
one decade. The parametrization is expressed as

Ks(ξ) = eln(A)+ξ(ln(B)−ln(A)), ξ ∼ U [0, 1],

with [A,B] = 2.5 · [10−3, 10−2] for TC1 and TC2,
[A,B] = [10−4, 10−3] for TC3.

The bounds A and B of the uncertainty ranges are selected
such that the mean values of Ks are essentially the same
as for the previous uniform distributions for the TC. How-
ever, the variability in the Ks are significantly increased
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for the log-uniform distributions, with coefficients of vari-
ation roughly equal to 64% compared to roughly 6% in the
uniform case.

As previously, a satisfactory convergence is achieved
for the second-order expansion PC - P2 (not shown), for
which the estimated the first moments of the outputs are
reported and compared with the case of the uniform dis-
tribution (bracketed values) in Table 7. The table shows
that the expected values of the outputs are weakly (TC1
and TC3) to moderately (TC2) affected by the changes in
the distributions of Ks. On the contrary, the standard de-
viations and the skewness of the outputs are larger for the
log-uniform case, as one may have anticipated from the
larger variability in the conductivity at saturation. This
can be better appreciated from the outputs pdf’s which
are reported for the two distributions in Fig. 17 for TC1
(cases of TC2 and TC3, not shown, are similar).

Concerning the sensitivity analysis, Table 8 compares
the relative influence of the parameters for the uniform and
log-uniform distributions for Ks and each TC. It is seen
that the increase in the variability ofKs yields a drastically
larger relative influence for the conductivity, as measured
by the first order sensitivity indices, which is now the dom-
inant source of uncertainty for all the TC. In fact, if the
log-uniform distribution had been defined to match both
the mean and standard deviation of the uniform case, the
conclusion of the sensitivity analysis would have remained
essentially the same as for the uniform distribution (not
shown). This exercise highlights the importance of the
assumed prior distribution of the parameters on the con-
clusions drawn from the sensitivity analysis.

Table 7: Moments of the quantities of interest using PC
- P2 for a log-uniform distribution of Ks. Results with a
uniform distribution of Ks are in bracket.

xf sf
µ σ s µ σ s

cm cm cm cm cm cm

TC1
22.33 10.65 0.74 14.08 4.24 0.54
[22.33] [3.27] [0.20] [15.14] [3.10] [0.47]

TC2
6.99 2.49 0.51 2.32 0.90 0.61
[9.87] [1.21] [0.18] [2.96] [0.61] [0.16]

TC3
21.82 9.70 0.59 6.08 1.77 0.59
[22.32] [1.16] [0.07] [6.39] [1.29] [0.34]

5. Conclusion

In this work, we have studied the impact of the vari-
ability in soil properties on subsurface flows governed by
Richards’ equation. We have considered random param-
eters in the water content and the conductivity consti-
tutive equations for three common models of the litera-
ture, namely the Haverkamp’s, the Van Genuchten’s and
the Brooks–Corey’s relations. An accurate second order
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Figure 17: TC1: Pdf’s of outputs with uniform (dotted
line) and log-uniform (solid line) distributions of Ks.

Table 8: First order sensitivity indices using PC - P2 for
a log-uniform distribution of Ks. Results with a uniform
distribution of Ks are in bracket.

xf sf

Ks 0.89 [0.07] 0.52 [0.00]
A 0.08 [0.84] 0.20 [0.45]

TC1 γ 0.00 [0.05] 0.19 [0.42]
α 0.00 [0.01] 0.05 [0.11]
β 0.00 [0.03] 0.00 [0.00]

Ks 0.90 [0.06] 0.67 [0.02]
TC2 ǫ 0.08 [0.66] 0.07 [0.27]

β 0.01 [0.28] 0.22 [0.70]

Ks 0.99 [0.57] 0.51 [0.00]
TC3 ψa 0.00 [0.33] 0.22 [0.47]

γ 0.00 [0.10] 0.24 [0.52]

discontinuous Galerkin method has been employed to dis-
cretize the deterministic problem in space and time. To
describe the impact of uncertainties, Polynomial Chaos ex-
pansions of the model outputs were constructed by means
of a non-intrusive spectral projection. The output quan-
tities we focused on are the position and the spreading of
the wetting front. For each hydrological laws, the effect of
the initial saturation state was investigated.

The results, and validation with Monte-Carlo simula-
tions, demonstrate that low order Polynomial Chaos ex-
pansions are well-adapted to represent our quantities of
interest. Specifically, for the three test cases, a second or-
der expansion provides accurate estimations of first output
moments and probability density functions. The computa-
tion of the output Polynomial Chaos expansions requires
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a number of simulations lower by two orders of magnitude
compared to Monte-Carlo. This is due to the smooth map-
ping between the input parameters and the model outputs
considered in this work, which allows for accurate low or-
der polynomial approximations to be efficiently computed
from a limited number of model simulations. However,
this may not be always the case. In particular, other
model outputs may present much more complex depen-
dences requiring significantly higher polynomial degrees
to be accurately approximated. In such situations, pre-
conditioning of the output to be projected may be an ef-
fective alternative to recover a fast convergence rate with
respect to the polynomial degree, see Alexanderian et al.

([2, 3]). The worst situation corresponds to outputs which
present singularities or discontinuities with respect to the
model parameters (i.e. parametric bifurcations), inducing
a slow convergence of spectral polynomial approximations.
Here, local approximations based on piecewise polynomial
representations over Ξ should be employed, for instance
introducing stochastic multi-wavelet decompositions, see
Le Mâıtre et al. [33, 34]. Finally, the extension of the
methodology to model parameters with values varying in
space (random fields), if conceptually immediate, will raise
the issue of the dimensionality of the parameter space. In
general, to limit the increasing computational cost of the
NISP method with the number of uncertain parameters,
the introduction of adaptive constructions for the cuba-
ture rule, following for instance Gerstner and Griebel [25],
will be a key ingredient to maintain efficiency.

Analysis of the output variability yields a first conclu-
sion that the advection and the diffusion of the wetting
front are well-correlated for all models and most satura-
tion states. Two others important findings of this work
are that the three models increase the input uncertainty
and that the variability of the front diffusion depends on
the saturation state. Results of the global sensitivity anal-
ysis can be summarized in three main conclusions. First,
for each model the more influent parameter depends on
the soil saturation state. Second, the interaction between
the input parameters are negligible for all models. Lastly,
the influence of the saturated conductivity increases with
the soil saturation for the position but is minor for the
spreading.

The sensitivity analyses presented for the different mod-
els are clearly of an a priori nature since the conclusions
depend on the assumed probability distributions of the rel-
evant parameters in the models. This was highlighted by
considering higher variability in the Ks with log-uniform
distribution, resulting in a larger relative influence of this
parameter. This exercise shows that expertise, or mea-
surements, are needed for a fair assessment of the respec-
tive parameters influence. Similarly, our simulations as-
sumed the statistical independence of the input parame-
ters, while experimental evidences may reveal correlations.
In fact, the effects of correlation and dependencies between
input parameters can readily be investigated a priori using
the constructed PC model (based on the independence as-

sumption). Indeed, the PC model being convergent in the
mean square sense, it can be resampled at will for other
probability distributions whose supports are included in
the support of the distribution used to generate the PC
expansion, without having to rely on additional full-model
solution. This is another interest in using the PC ex-
pansions that we plan to exploit in the future. Finally,
a pure Monte-Carlo sensitivity analysis could have been
performed for the present simple situation (and was in
fact used for validation and error computations), owing to
the low computational cost of the model solves; however
the advantages of the PC approach are expected to be-
come more significant when considering domains in higher
dimensions and more complex parameter distributions, in
particular for random fields based on experimental char-
acterization of soils properties, for which the Monte-Carlo
methods can become prohibitively costly. Current works
are focusing on this aspect.
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Appendix A. Smolyak formula and cubature rule

We provide a brief overview of the Smolyak formula
for the construction of sparse integration formula in d-
dimensions. Consider a nested sequence of one-dimensional
quadrature formulas,

ˆ

fdx ≈ I lf
.
=

ql∑

i=1

f(xli)ω
l
i, l = 1, 2, . . .

where l denotes the level of the formula. The nested char-
acter implies that the quadrature points {xli, i = 1, . . . , ql}
belongs to the set of points of formulas with level l′ ≥ l.
Typically, the number of points at a level l is ql ∼ 2l. The
multi-dimensional formula at level l for the full tensoriza-
tion is
˙

f(x1, . . . , xd)dx1 . . . dxd ≈ I l ⊗ · · · ⊗ I lf

=

ql∑

i1=1

· · ·
ql∑

id=1

f(xli1 , . . . x
l
id
)wli1 . . . w

l
id
.

Introducing the one-dimensional difference formulas,

δI lf = (I l − I l−1)f, δI1 = I1,

and the mult-index l = (l1 . . . , ld) ∈ N
d, the tensored for-

mula can be expressed as

I l ⊗ · · · ⊗ I lf =
∑

|l|∞≤l

δl1 ⊗ · · · ⊗ δldf, |l|∞ = max
i
li.
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The level l Smolyak sparse tensorization, see (Smolyak,
1963 [46]), is obtained by restricting the summation of the
tensored differences to the reduced set of multi-indexes as
follows
˙

f(x1, . . . , xd)dx1 . . . dxd ≈
∑

|l|≤l+d−1

δl1 ⊗ · · · ⊗ δldf,

where |l| =
∑

i li. The left-hand side of the previous equa-
tion can be recast as a cubature rule

˙

f(x1, . . . , xd)dx1 . . . dxd ≈
Nl∑

j=1

wjf(xj),

where the total number of cubature points depends on the
level l. The cubature points are plotted in Fig. A.18 in the
case d = 3 and l = 4. The sparse tensorization yields a sig-
nificantly lower number of cubature points, compared to
the fully tensored formula, and one can easily determined
the polynomial functions f which are exactly integrated
from the properties of the underlying one-dimensional se-
quence. In this work, we rely on cubature rules based on
nested Konrod-Patterson formulas (Petras, 2000 [40] and
2001 [41]) and (Keese and Matthies, 2003 [29]) for integra-
tion over hypercubes.

Figure A.18: Cubature points for the numerical integra-
tion over [0, 1]3 and level l = 4.
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