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Résumé— Comparaison des méthodes DDFV et DG pour des écoulements en milieu poreux
hétérogène anisotrope— Nous présentons un travail préliminaire visant à simuler l’injection de gaz
dans les aquifères profonds. Des écoulements instationnaires monophasiques sont considérés. Nous
comparons des schémas volumes finis en dualité discrète (DDFV) et de Galerkin discontinu (DG)
utilisés pour discrétiser le terme diffusif. Une formule de différentiation rétrograde d’ordre deux est
utilisée pour la discrétisation en temps. D’une part, les schémas DDFV sont simples à implémenter,
préservent les propriétés physiques et présentent souventune super convergence en normeL2. D’autre
part, les méthodes DG sont flexibles, permettent des ordres de convergence arbitrairement élevés et
leur fondement théorique en font un choix adapté à de nombreux problèmes. La méthode de Galerkin à
pénalisation intérieure pondérée symétrique est choisie dans ce travail. La précision et la robustesse de
ces deux schémas sont testées et comparées sur des cas tests variés, notamment en milieu hétérogène
anisotrope.

Abstract— Comparison of DDFV and DG methods for flow in anisotropic heterogeneous porous
media — We present a preliminary work to simulate gas injection in deep aquifers. Unsteady
single-phase flows are considered. We compare Discrete Duality Finite Volume (DDFV) and Discon-
tinuous Galerkin (DG) schemes applied to discretize the diffusive term. The second-order Backward
Differentiation Formula is used for the time-stepping method. On the one hand, the DDFV methods
are easy to implement, ensure a preservation of physical properties and offer superconvergence in the
L2-norm on a regular basis. On the other hand, the DG methods areflexible, allow arbitrary order of
accuracy, and their ample theoretical foundation make thema reliable choice for many computational
problems. We consider here the Symmetric Weighted InteriorPenalty Galerkin method. Accuracy
and robustness of these two schemes are tested and compared on various test cases, especially in
anisotropic heterogeneous media.
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1 INTRODUCTION

Prediction of fluid flows in geological subsurface is a key
process in many applications like groundwater hydrology,
oil recovery, and more recently CO2 geological storage and
deep geothermal science. Several works are devoted to de-
sign numerical schemes (listed below) for simulating these
types of flows. This article is a comparison of two con-
servative methods which are accurate (i.e. having a second-
order convergence), robust in anisotropic heterogeneous me-
dia (i.e. with a diffusivity tensor inducing a space-dependent
preferential direction for the flow) and valid for general
meshes (i.e. not only for K-orthogonal meshes). We present
a preliminary work dedicated to single-phase flows. An ex-
tension of this study is to consider two phases (gas and wa-
ter) in the frame of CO2 injection in deep aquifers.

A various choice of methods is available to approximate
nonlinear diffusion equations. For instance to discretize the
Richards equation, Celia et al. (1990) consider finite ele-
ment (FE), Narasimhan and Witherspoon (1976) apply finite
volume (FV) with two-point flux approximation, Manzini
and Ferraris (2004) use diamond cell FV, and Knabner and
Schneid (2002) employ mixed finite element (MFE). Several
other FV methods and variants exist, including the MPFA,
SUSHI and VAG schemes, see Eymard et al. (2012) and ref-
erences therein for details. In this work, we propose an alter-
native approach by applying and comparing DDFV and DG
methods. The DDFV methodology was introduced about ten
years ago by Hermeline (2000). It has been applied to a vari-
ety of problems over the past few years, from isotropic scalar
diffusion with Domelevo and Omnes (2005) to electrocardi-
ology, see Coudière et al. (2009), among others. This FV
method is a natural choice because it has proven robust-
ness when applied to anisotropic and heterogeneous diffu-
sion problems on general, most notably non-matching and
distorted meshes. It is locally conservative and preserves
the symmetry of the continuous problem, which allows effi-
cient iterative solvers to be employed. Besides it offers aL2-
norm superconvergence on various examples, together with
a very accurate appoximation of the gradient, as was noted
in Herbin et al. (2008). In this paper we adapt a version
of the DDFV scheme described in Coudière et al. (2009),
Krell (2010) which allows discontinuities of the permeabil-
ity tensor along faces. DG methods have appeared thirty
years ago with Lesaint and Raviart (1974) and are efficient
to approximate equations present in engineering sciences.
Advantages of these methods are multiple especially the lo-
cal conservation (as with FV and MFE). The order of accu-
racy (as FE and MFE) can be different for each element of
the mesh, facilitating thep-refinement. The flexibility in the
use of non-matching meshes (as FV) is particularly adap-
tated for theh-refinement. Several DG methods can be used
for one-phase and two-phase flows in porous media, such
as the local DG method described in Bastian et al. (2007),
Fagherazzi et al. (2004) and the non-symmetric or the sym-

metric interior penalty Galerkin method used in Bastian
(2003), Klieber and Rivière (2006), Sochala et al. (2009).
Here, we choose the symmetric weighted interior penalty
DG method (SWIP), because it preserves the natural sym-
metry in the discrete diffusion operator and uses diffusion-
dependent weighted averages to reduce the amount of sta-
bilization required, Di Pietro and Ern (2012). Regard-
ing time discretization, we propose to use the second-order
backward differentiation formula (BDF2) from Curtiss and
Hirschfelder (1952). This implicit scheme avoids the CFL
condition particularly restrictive for explicit schemes when
the diffusion term is present. Furthermore, BDF2 is more
efficient than implicit Runge-Kutta (DIRK) schemes, which
require several stages (three for the second-order version).
Besides, the last stage of DIRK schemes is ill-posed where
the soil is saturated, as was underlined in Sochala et al.
(2009). Finally, BDF2 is preferred to Crank-Nicolson which
is not L-stable, Hairer and E. (2010).

The aim of this work is to test and compare the DDFV
and SWIP schemes for solving flows in anisotropic hetero-
geneous porous media. We propose to consider the conser-
vative form of the Richards equation in a two-dimensional
domainΩ,





∂tθ(ψ) − ∇ · (K(ψ)(∇ψ + ez)) = f in Ω×]0,T],

ψ = ψ0 in Ω × {0},

ψ = ψD on ∂ΩD×]0,T],

−K(ψ)(∇ψ + ez) · nΩ = vN on ∂ΩN×]0,T],

(1)

whereT is the final time of simulation,∂ΩD (resp. ∂ΩN)
the boundary ofΩ where a Dirichlet conditionψD (resp.
Neumann conditionvN) is applied, andnΩ the outward unit
normal of∂Ω = ∂ΩD ∪ ∂ΩN. The vectorez = (0, 1)t is
the gravity contribution. The pressure headψ is the un-
known and is related to the velocityv through Darcy’s law
v(ψ) = −K(ψ)(∇ψ + ez). Two constitutive relationships
ψ 7→ θ(ψ) andψ 7→ K(ψ) are necessary to close the model.
Examples of water contentθ and conductivityK are indi-
cated in subsections 4.1 and 4.2. For the sake of simplicity,
we suppose that the source termf is equal to zero (except for
the validation test case described in subsection 4.1). We in-
vestigate three test cases (TC) to compare DDFV and SWIP
methods in several configurations. TC1 and TC2 are column
infiltration problems in an isotropic homogeneous soil. TC1
has an analytical solution and permits to validate the conver-
gence rate of the methods. The stencil of the DDFV method
produces a sparser matrix than SWIP. In return, the latter
leads to a narrower bandwith and smaller condition num-
bers. TC2 features a stiff pressure front which highlights
significant differences for coarse meshes. DDFV underesti-
mates the front propagation speed while SWIP presents non-
physical oscillations. TC3 is a quarter five-spot configura-
tion in an anisotropic heterogenous soil. The two methods
only differ in the evaluation of the mass error, depending on
the choice of the nonlinear solver tolerance.
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The outline is as follows. Section 2 introduces the space
discretization associated with DDFV and SWIP methods.
Section 3 describes the time discretization performed by the
BDF2 formula and the Picard fixed point algorithm used to
solve the nonlinear discrete system. Section 4 details the
results on the three TC described above. Conclusions and
perspectives are drawn in Section 5.

2 SPACE DISCRETIZATION

2.1 Notations

Let {Th}h>0 be a shape-regular family of unstructured me-
shes ofΩ consisting for simplicity of affine triangles. For
an elementτ ∈ Th, let ∂τ denote its boundary andnτ its
outward unit normal. The setFh of mesh faces is partitioned
into F i

h ∪ F
D
h ∪ F

N
h , whereF i

h is the set of internal faces
andF D

h (resp.F N
h ) is the set of Dirichlet (resp. Neumann)

faces. For a faceσ ∈ F i
h, there existτ+ andτ− in Th such

thatσ = ∂τ+ ∩ ∂τ−. We denote byFτ ⊂ Fh the set of the
facesσ such that∂τ = ∪σ∈Fτσ, and byFs ⊂ Fh the set of
the facesσ that sharesas a vertex. We definenσ as the unit
normal toσ pointing fromτ− to τ+ (see Fig 1).

The setSh of mesh vertices is partitioned intoSi
h ∪ S

D
h ∪

SN
h whereSi

h are the interior vertices,SN
h gathers all the end-

points of the edges inF N
h andSD

h are the remaining bound-
ary vertices. A secondary mesh is associated to this setSh

as follows: any vertexs ∈ Si
h ∪ S

N
h is associated to a unique

polygonal cellS whose vertices are the centers of the tri-
anglesτ and the midpoints of the facesσ that shares as a
vertex; and which containss (see Fig 2). Consequently, each
faceσ is associated to its two neighbouring cellsτ+ andτ−

and its two vertices, denoted bys+ and s−. The following
orientation assumption is made for these notations:

det(xτ+ − xτ− , xs+ − xs− ) > 0,

although the complete orientation is arbitrary and irrelevant
in the sequel. Here,xτ is the center of gravity ofτ ∈ Th

andxs are the coordinates ofs ∈ Sh. We also denote byxσ
the midpoints of the facesσ ∈ Fh (see Fig 3). Note that a
faceσ ⊂ ∂Ω has only one neighbouring triangle which is
denoted byτ− in the sequel, so that the normalnσ is also the
unit normal to∂Ω outward ofΩ.

The DDFV method couples, through the flux computa-
tions, two finite volume schemes written on a primary mesh
Th (considering the cellsτ as control volumes) and on a
secondary meshSh (considering the cellsS as control vol-
umes). Hence the DDFV discrete unknown is a set of de-
grees of freedomΨh, that eventually defines a functionψh

(section 2.2). The DG method directly defines a discrete un-
known functionψh (section 2.3) and is based on a discrete
variational formulation.

nσ

nτ− nτ+

σ

τ−
τ+

∂τ− ∂τ+

b

b

s+

s−

Figure 1: Basic notations.

s1

s2

S1

S2

b

b

primary mesh

secondary mesh

Figure 2: Cells (in gray) of the secondary mesh used in the
DDFV method.

2.2 Discrete Duality Finite Volume method

The DDFV method approximates the average ofψ on each
control volumeτ ∈ Th and on each control volumeS asso-
ciated to a vertexs ∈ Si

h ∪S
N
h . Hence we define the discrete

DDFV unknown as

Qh
def
=

{

Ψh = (ψτ, ψs)τ∈Th,s∈Si
h∪S

N
h

}

.

Several functions can be associated to these degrees of free-
dom, for instance the usual piecewise constant function on
eachτ ∈ Th (or its sibling piecewise constant on eachS for
s ∈ Sh), but also the functionψh that is piecewise linear on
the triangles with baseσ and vertexxτ (for all τ ∈ Th and
σ ∈ Fτ) and such thatψh(xτ) = ψτ andψh(xs) = ψs.

If we integrate equation (1) on a control volumeτ ∈ Th

we get :

d
dt

∫

τ

θ(ψ) −
∑

σ∈F∗τ

∫

σ

K(ψ)(∇ψ + ez) · nτ −
∑

σ∈FN
τ

∫

σ

vN = 0

whereFN
τ = Fτ ∩ F

N
h andF∗τ = Fτ \ FN

τ . Note that the flux
−K(ψ)(∇ψ + ez) · nτ is continuous through each faceσ of τ.
The DDFV scheme reads, for any control volumeτ ∈ Th,

d
dt
|τ|θ(ψτ)−

∑

σ∈F∗τ

K(ψσ,τ)
(

∇σ,τΨh + ez
)

·Nσ−
∑

σ∈FN
τ

Vσ = 0, (2)

whereψσ,τ (resp.∇σ,τΨh) approximatesψ (resp.∇ψ) on the
sideτ of the faceσ, the normalNσ = |σ|nσ is the normal



4 Preprint

toσ outward ofτ accounting for the length ofσ andVσ ap-
proximates

∫

σ
vN. Note that in the TC presented in section 4,

the boundary data is piecewise constant and we can take ex-
actly Vσ =

∫

σ
vN. There are several possible choices for the

valueψσ,τ. We take here

ψσ,τ =
1
3

(ψτ + ψs− + ψs+ ) ,

because it seems to provide the best accuracy and robust-
ness. For each vertexs ∈ SD

h , we choose to takeψs = ψD(xs)
from the Dirichlet boundary data. For any control volumeS
associated to a vertexs ∈ Si

h ∪ S
N
h , the discrete equation is

d
dt
|S|θ(ψs) −

∑

σ∈F∗s

(

K(ψσ,τ−)
(

∇σ,τ−Ψh + ez
)

· Ne−

+ K(ψσ,τ+)
(

∇σ,τ+Ψh + ez
)

· Ne+
)

−
∑

σ∈FN
s

(

K(ψσ,τ)
(

∇σ,τΨh + ez
)

· Ne + Vσs

)

= 0, (3)

whereFN
s = Fs ∩ F

N
h and F∗s = Fs \ FN

s . In these sum-
mations, ifσ ∈ F∗s then the vertexs is identified tos−, the
neighbouring triangles areτ± and the interface between the
control volumes associated tos− ands+ has two partse+ and
e−, of which the corresponding normals areNe± = ne± |e±| as
depicted in Fig. 3. Ifσ ∈ FN

s , then there is only one triangle
τ neighbouringσ but the flux still has two terms, one along
the edgee defined as in the previous case (with the normal
Ne = ne|e|) and one along the line (xs, xσ) ⊂ σ. The num-
berVσs approximates the integral of the Neumann boundary
data along this line. Given a faceσ ∈ F i

h, we denote by

e− e+

b
bb

τ−
τ+

b

b

s+

s−

xσxτ− xτ+

ne− ne+

Figure 3: Notations for DDFV method.

−Fσ,τ± = ±K(ψσ,τ±)
(

∇σ,τ±Ψh + ez
)

· Nσ

the fluxes out ofτ− andτ+ through the faceσ and by

Fe = K(ψσ,τ−)
(

∇σ,τ−Ψh + ez
)

· Ne−

+ K(ψσ,τ+)
(

∇σ,τ+Ψh + ez
)

· Ne+

the total flux froms− to s+ through the interfaceS− ∩ S+.
Given a faceσ ∈ F N

h ∩ Fτ and an endpointsof σ,

Fe = K(ψσ,τ)
(

∇σ,τΨh + ez
)

· Ne

is the flux froms to the opposite endpoint ofσ. The flux
Fe is continuous through the interface betweenS− andS+

by construction. We ensure the continuity of the fluxesFσ,τ±

throughσ by introducing an auxiliary unknownψσ used to
compute the gradients∇σ,τ−Ψh and∇σ,τ+Ψh, following the
DDFV strategy from Coudière et al. (2009) :

∇σ,τ−Ψh =
1

2Dσ,τ−

(

(ψσ − ψτ−)Nσ + (ψs+ − ψs− )Ne−
)

∇σ,τ+Ψh =
1

2Dσ,τ+

(

(ψτ+ − ψσ)Nσ + (ψs+ − ψs− )Ne+
)

,

where 2Dσ,τ± = ± det(xτ±−xσ, xs+−xs−), meaning thatDσ,τ±

are the areas of the triangles with baseσ and verticesxτ± .
In the boundary caseσ ∈ F N

h , there is only one gradient,
namely∇σ,τ−Ψh. The auxiliary unknown is then the unique
solution to the linear equationFσ,τ−+Fσ,τ+ = 0 in the general
interior case and to the linear equationFσ,τ− = Vσ in the
boundary case. Then the flux between the primary cellsτ±

is Fσ = Fσ,τ− = −Fσ,τ+ and the scheme (2)-(3) reads :

d
dt
|τ|θ(ψτ) −

∑

σ∈F∗τ

Fσ −
∑

σ∈FN
τ

Vσ = 0,

d
dt
|S|θ(ψs) −

∑

σ∈Fs

Fe−
∑

σ∈FN
s

Vσs = 0.

In view of the expression of the fluxes and the gradients,
we adopt some additional notations in the general interior
case. On each sideτ± of σ, we define the following Gram
matrices :

(

a± b±
b± c±

)

def
=

1
2Dσ,τ±

K(ψσ,τ±)

(

Nσ

Ne±

)
(

Nσ Ne±
)

,

andα±, β± are defined similarly by
(

α±
β±

)

def
= K(ψσ,τ±)ez ·

(

Nσ

Ne±

)

.

Hence the equationin ψσ, Fσ,τ− + Fσ,τ+ = 0 now reads
a−(ψσ−ψτ− )+b−(ψs+−ψs− )+α− = a+(ψτ+−ψσ)+b+(ψs+−ψs− )+α+
and can be easily solved. Afterwards, we replaceψσ by its
expression and find that the calculation of the fluxesFσ and
Fe can be carried out as follows:

(

Fσ

Fe

)

= Aσ(Ψh)

(

ψτ+ − ψτ−

ψs+ − ψs−

)

− bσ(Ψh),

with

Aσ(Ψh) =





a−a+
a−+a+

a+b−+a−b+
a−+a+

a+b−+a−b+
a−+a+

c+ + c− −
(b+−b−)2

a−+a+





bσ(Ψh) = −





a+α−+a−α+
a−+a+

β− + β+ −
b+−b−
a−+a+

(α+ − α−)




.
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In the case of a faceσ ∈ F N
h ∩ τ, we assume that the

neighbouring triangleτ is τ− and the equation onψσ reads
a−(ψσ − ψτ−) + b−(ψs+ − ψs−) + α− = Vσ. It is solved easily
and results in the expression

Fe =

(

c− −
b2
−

a−

)

(ψs+ − ψs− ) + β− −
b−
a−
α− +

b−
a−

Vσ.

Lastly, if σ ∈ F D
h , the quantityFe does not need to be de-

fined, as onlyFσ adds a contribution to the system. In this
case, the auxiliaryψσ is chosen asψσ = 1

2(ψs+ + ψs−).
By assembling these local contributions, the semi-discrete

DDFV scheme finally reads

Mh
d
dt
Θ(Ψh) + Ah(Ψh)Ψh = bh(Ψh), (4)

whereΘ(Ψh) = (θ(Ψτ), θ(Ψs))τ∈Th,s∈Si
h∪S

N
h
, Mh is a diagonal

mass matrix andAh(Ψh) is a symmetric and positive matrix.

2.3 Discontinuous Galerkin method

The Discontinuous Galerkin methods are based on varia-
tional formulations (as for the classical finite element). The
discontinuous finite element spaceVh is defined as

Vh
def
= {φ ∈ L2(Ω), ∀τ ∈ Th, φ|τ ∈ Pp(τ)},

wherePp(τ) is the set of polynomials of degree less than or
equal top on an elementτ. We observe that the functions
in Vh are not necessarily continuous. This fact is exploited
by selecting basis functions which are locally supported in
a single mesh element. As a consequence, when a trian-
gular mesh and aP1-Lagrange approximation are chosen,
the unknowns are localized at the vertices of each triangle
as illustrated on Fig. 4. A linear approximation yields the
same order of convergence as DDFV, though higher-order
elements could also be considered. We define the weighted
average operator{}ω,σ and the jump operator [[]]σ as follows:
for a functionξ which is possibly two-valued onσ,

{ξ}ω,σ
def
= ω−ξ− + ω+ξ+ and [[ξ]]σ

def
= ξ− − ξ+,

whereξ± = ξ|τ± . For boundary faces,{ξ}ω,σ = ξ|σ and
[[ξ]]σ = ξ|σ. For vector-valued functions, average and jump
operators are defined componentwise. For the Richards
equation, the SWIP method can be written as

d
dt

∫

Ω

θ(ψh)φ + ah(ψh, φ) = bh(ψh, φ),

where for (ψ, φ) ∈ Vh × Vh,

ah(ψ, φ)
def
=

∫

Ω

K(ψ)∇ψ · ∇φ +
∑

σ∈F i
h∪F

D
h

ηγK

dσ

∫

σ

[[ψ]]σ[[φ]]σ

−
∑

σ∈F i
h∪F

D
h

∫

σ

(

[[ψ]]σ{K(ψ|τ) ∇φ}ω,σ + [[φ]]σ{K(ψ|τ) ∇ψ}ω,σ
)

·nσ,

bh(ψ, φ)
def
=

∫

Ω

∇ · (K(ψ)ez) φ −
∑

σ∈F N
h

(vN + K(ψ|τ)ez · nΩ)φ

+
∑

σ∈F D
h

∫

σ

(

−K(ψ|τ) ∇φ · nΩ +
ηγK

dσ
φ

)

ψD.

A specific choice of the weights is made to yield robust error
estimates with respect to the diffusitivity,

ω− =
δ+Kn

δ−Kn + δ
+
Kn

and ω+ =
δ−Kn

δ−Kn + δ
+
Kn

,

with δ±Kn = K±nσ · nσ for σ ∈ F i
h. In the penalty term,η

is a positive parameter (to be taken larger than a minimal
threshold depending on the shape-regularity ofTh), anddσ
is the diameter of the faceσ, i.e. the largest diameter of the
triangle(s) of whichσ is a face. The coefficientγK is defined
as

γK
def
=






2δ−Knδ
+
Kn

δ−Kn + δ
+
Kn

if σ ∈ F i
h,

δKn if σ ∈ F D
h ,

with δKn = Knσ · nσ. The above choice ofω− andω+ leads
to the harmonic mean of the diffusivity tensor,

{K(ψ|τ) ∇ψ}ω,σ · nσ =
2δ−Knδ

+
Kn

δ−Kn + δ
+
Kn

(∇ψ|τ− + ∇ψ|τ+).

Using harmonic means is particularly adapted at an interface
between poorly and highly conductive media. In this case,
the harmonic mean value of the diffusivity is close to the
value in the poorly conductive medium, Di Pietro and Ern
(2012).
Again, by assembling the local contributions, the semi-
discrete DG scheme takes the form of (4), whereMh is a
block diagonal matrix,Ah is a block matrix andΨh is the set
of the values ofψh at each degree of freedom.

DDFV

b b

b

b
b

b

b

b b

b

DG - P1

b b

b

b b

b b
b

b

b b

b

Figure 4: Unknowns localization for each method.
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3 TIME DISCRETIZATION AND NONLINEAR
RESOLUTION

3.1 Backward Differentiation Formula

The next step consists in approximating the time derivative
in (4). We propose the second order Backward Differentia-
tion Formula (BDF2) :

d
dt

yn ≃
1
δt

(

3
2

yn − 2yn−1 +
1
2

yn−2

)

,

where the superscriptn denotes the time level, andδt is the
constant time step, chosen such thatT/δt is an integer. Sub-
stituting the last expression in (4) finally yields the following
fully discrete scheme:

∀n ≥ 2,
3

2δt
MhΘ(Ψn

h) + Ah(Ψn
h)Ψn

h

= bh(Ψn
h) +

2
δt

MhΘ(Ψn−1
h ) −

1
2δt

MhΘ(Ψn−2
h ).

The vectorΨ1
h is computed by the Crank-Nicolson scheme.

3.2 Linearization algorithm

The above is obviously a nonlinear system, and may thus
be solved through an iterative procedure, which we describe
in this section. The iteration level will be reffered to as the
superscriptm. As suggested in Manzini and Ferraris (2004),
we use the Picard fixed point method to obtain :

3
2δt

MhΘ(Ψn,m+1
h ) + Ah(Ψn,m

h )Ψn,m+1
h

= bh(Ψn,m
h ) −

1
δt

(

−2MhΘ(Ψn−1
h ) +

1
2

MhΘ(Ψn−2
h )

)

.

To complete the linearization, we now use the following
Taylor series expansion :

Θ(y) ≃ Θ(x) +
∂Θ

∂Ψ
(x) · (y− x),

which we apply withx = Ψn,m
h andy = Ψn,m+1

h . Finally, the
system to solve is :

(

3
2

Mh∂ψΘ(Ψn,m
h ) + δtAh(Ψn,m

h )

)

δΨ
n,m
h = δtbh(Ψn,m

h )

−δtAh(Ψn,m
h )Ψn,m

h −Mh

(

3
2
Θ(Ψn,m

h ) − 2Θ(Ψn−1
h ) +

1
2
Θ(Ψn−2

h )

)

,

whereδΨn,m
h = Ψ

n,m+1
h − Ψ

n,m
h is the unknown of the sys-

tem. In this form, the algorithm produces at each time level

n, a sequence (Ψn,m
h )m≥0 defined by the recurrence relation

Ψ
n,m+1
h = Ψ

n,m
h + δΨ

n,m
h , together with a second-order ini-

tialization : Ψn,0
h = 3Ψn−1

h − 3Ψn−2
h + Ψn−3

h for n ≥ 3, (and
Ψ

1,0
h = Ψ

0
h,Ψ

2,0
h = 2Ψ1

h−Ψ
0
h ). We use the LU decomposition

for solving each linear system and our stopping criterion is
‖δΨn,m

h ‖2‖Ψ
n−1
h ‖

−1
2 ≤ ǫ, whereǫ is the user-defined tolerance.

3.3 Mass conservation properties

The study of the mass evolution and repartition (i.e. the sep-
aration over time of the mass variation in the domain, the
mass inflow and the mass outflow) helps to understand the
behavior of the system. It also allows to quantify the mass
defect generated by the linearization algorithm. The volume
of water in the domainΩ at timenδt is obtained by integrat-
ing the volumetric water content inΩ,

Vn def
=

∫

Ω

θ(ψn
h).

By using the BDF2 formula, we have

3
2

Vn − 2Vn−1 +
1
2

Vn−2 =
(

Fn
D + Fn

N

)

δt + ǫn, (5)

where the quantitiesFn
D andFn

N are defined as

Fn
D

def
= −

∫

∂ΩD
v⋆,nh , and Fn

N
def
= −

∫

∂ΩN
vn

N,

andǫn stands for the numerical error in the resolution of the
nonlinear system. The reconstructed normal velocityv⋆,nh on
a Dirichlet faceσ is estimated from the pressure,

v⋆,nh |σ =






−K(ψn
σ,τ−

)
(

∇σ,τ−Ψ
n
h + ez

)

· nσ for DDFV,

v(ψn
h|σ) · nσ +

ηγK

dσ
(ψn

h|σ − ψD) for SWIP.

The variation of the volume of water over the time step
[(n−1)δt, nδt] is deduced from a reformulation of (5), yield-
ing

Vn − Vn−1 =
(

Φn
D + Φ

n
N

)

δt + en, (6)

where the fluxΦn ∈ {Φn
D,Φ

n
N} and the erroren over the time

step [(n− 1)δt, nδt] are defined as

Φn def
=

2
3

Fn +
1
3
Φn−1, and en def

=
2
3
ǫn +

1
3

en−1.

The initialization of the fluxes recursive formulas depends
on the scheme used at the first time step. For the Crank-
Nicolson scheme, the global mass conservation is written as

V1 − V0 =
(

Φ1
D + Φ

1
N

)

δt + e1 with Φ1 =
1
2

(

F0 + F1
)

.

(7)
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4 RESULTS

We propose three TC with increasing difficulties corre-
sponding to a more general form of the conductivity defined
as

K(ψ, x) =
ρg
ν

k(ψ)K(x),

wherek(ψ) is the relative permeability,K(x) the intrinsic
tensor permeability of the soil;ρ, g andν are respectively
the fluid density, the gravity constant and the dynamic vis-
cosity. We first consider two downward infiltrations in an
isotropic homogeneous medium (i.e. K = I). The first TC
presents an analytical solution to verify the theoretical con-
vergence rates and the second TC is the propagation of a stiff

pressure front. We also study the quarter five-spot problem
in an anisotropic heterogeneous medium (i.e. K , I and is
space-dependent).

4.1 Isotropic homogeneous validation test case

We propose a TC with an analytical solution to compare the
two methods in terms of matrix properties and convergence.
The domain isΩ = [0, 4]× [0, 20] (in cm) and the final time
T = 2min. The analytical solution

ψ(z, t) = 20.4 tanh

[

0.5
(

z+
t

12
− 15

)]

− 41.1

is used to determine adequate source term and Dirichlet
boundary condition enforced on∂Ω. The water content and
the conductivity are defined by Haverkamp’s constitutive re-
lationships which are derived in Haverkamp et al. (1977) :

θ(ψ) =
θs − θr

1+ |α̃ψ|β
+ θr and K(ψ) =

Ks

1+ |Ãψ|γ
,

with parameters

θs = 0.287, θr = 0.075, α̃ = 0.0271cm−1, β = 3.96,

Ks = 9.44 · 10−3 cm.s−1, Ã = 0.0524cm−1, γ = 4.74.

For a mesh, the number of unknownsNu is

Nu =






Nt + Nn − ND
n for DDFV,

3Nt for DG− P1,

whereNt is the number of triangles,Nn the number of nodes
andND

n the number of nodes where a Dirichlet condition is
enforced (and which is equal to the number of nodes located
on ∂Ω). Consequently, the number of unknowns for DDFV
is about half the number of unknowns for SWIP when the
mesh is sufficiently fine (i.e. Nn ≫ ND

n ) :
Nt+Nn−ND

n ≃ Nt+Nn ≃ 3/2Nt, becauseNt ≃ 2Nn from the

Euler relations. We have therefore constructed two families
of unstructured meshes{M i}1≤i≤6 and{Mi}1≤i≤6 respectively
for DDFV and SWIP, and such that the number of unknowns
for M i and Mi are close. For each mesh, Tab. 1 refers to
Nn,Nt and Nu. The number of nonzero elementsnnz, the
mean number of nonzero elements per rownnz(= nnz/Nu)
and the bandwidthbwof the corresponding matrix (obtained
after a reverse Cuthill–McKee ordering, see Cuthill and Mc-
Kee (1969)) are also indicated. The first remark is that the
number of nonzero elements is different for each method
since it depends on the stencil. By considering fine meshes
(typically M5, M6, M5 andM6), we have for DDFV,

nnz≃ 7Nt + 13Nn ⇒ nnz≃
7Nt + 13Nn

Nt + Nn − ND
n
≃ 9,

while we have for SWIP,

nnz= 9(5Nt − 2Nn + 2) ⇒ nnz=
3(5Nt − 2Nn + 2)

Nt
≃ 12.

The second remark is that the bandwidth is smaller for SWIP
which has a more simple connectivity graph due to the block
structure of its matrix. To sum up, DDFV requires less stor-
age capacity whereas SWIP seems more efficient for solving
each linear system.

TABLE 1: TC1 - Meshes used for DDFV on the top and
SWIP on the bottom.

Mesh Nn Nt Nu nnz nnz bw

M1 28 34 42 234 5.6 6
M2 79 118 159 1127 7.1 16
M3 253 430 609 4897 8.0 34
M4 917 1688 2461 21009 8.5 58
M5 3380 6474 9570 83742 8.8 145
M6 13233 25896 39031 348595 8.9 267

M1 13 16 48 504 10.5 12
M2 40 54 162 1728 10.7 15
M3 128 204 612 6894 11.3 24
M4 464 826 2478 28836 11.6 57
M5 1702 3198 9594 113292 11.8 96
M6 6591 12780 38340 456480 11.9 196

Tab. 2 presents the errors on the hydraulic headeψ,Ω and
on the velocityev,Ω for all the meshes,

eψ,Ω =
max

1≤n≤NT

||ψn − ψn
h||L2(Ω)

max
1≤n≤NT

||ψn||L2(Ω)
, ev,Ω =

||v− vh||L2(Ω×[0,T])

||v||L2(Ω×[0,T])
.

For the two methods, the results confirm theoretical estima-
tions since a second-order convergence is observed on the
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TABLE 2: TC1 - Convergence results for DDFV on the top
and SWIP on the bottom.

Mesh δt eψ,Ω ev,Ω

error rate error rate

M1 8 1.00e-2 1.15e-1
M2 4 3.34e-3 2.46 4.18e-2 2.26
M3 2 1.00e-3 1.90 1.91e-2 1.23
M4 1 2.51e-4 2.23 9.41e-3 1.14
M5 1/2 6.29e-5 2.03 4.59e-3 1.05
M6 1/4 1.58e-5 1.99 2.28e-3 1.01

M1 8 4.51e-2 3.25e-1
M2 4 4.40e-3 2.60 1.17e-1 0.70
M3 2 1.10e-3 2.00 5.91e-2 0.99
M4 1 2.70e-4 2.17 2.94e-2 1.08
M5 1/2 6.41e-5 2.26 1.42e-2 1.14
M6 1/4 1.59e-5 1.92 7.09e-3 0.96

hydraulic head and a first-order convergence is verified on
the velocity.

Tab. 3 reports the mean numberNit of iterations in the
linearization algorithm and the mean condition numberκ1

2 ,

Nit =
1

NT

∑

n

Nn
it and κ1

2 =

(
∑

n

Nn
it

)−1(∑

n,m

λn,m
max

λ
n,m
min

)

,

where Nn
it is the number of iterations performed at time

level n andλn,m
max (resp. λn,m

min) is the maximal (resp. min-
imal) eigenvalue of the matrix at them-th nonlinear itera-
tion of then-th time step. We observe that the mean con-
dition number is inversely proportional to the mesh sizeh.
This is consistent with a finite difference result which states
that the condition numberκ2 is proportional toh−2. Fur-
thermore, the SWIP method significantly reduceseψ,Ω (by
a factor of 1.5) andκ1

2 (by a factor of 6) obtained with the
most classical symmetric interior penalty galerkin method
(which usesω+ = ω− = 0.5). To balance the various er-
ror sources (due to space and time discretizations as well as
nonlinear systems resolution), an adaptive inexact Newton
method and adaptive time-stepping based ona posteriori
estimation could be implemented, as was done in Ern and
Vohralík (2010).

4.2 Isotropic homogeneous stiff case

This TC is a stiff infiltration problem proposed by Celia et al.
(1990). The domain isΩ = [0, 20]× [0, 100] (incm) and the
final time isT = 48h. A constant initial condition is consid-
ered. A Dirichlet condition is imposed on the topT and the

TABLE 3: TC1 - Mean number of iterations and mean con-
dition number.

Mesh DDFV SWIP

Nit κ1
2 Nit κ1

2

1 2.9 65.1 2.3 2.0
2 1.8 120.5 1.2 2.1
3 1.0 203.6 1.1 4.6
4 1.0 432.1 1.0 11.6
5 1.0 813.7 1.0 24.8
6 1.0 1625.4 1.0 54.5

bottomB of the column. An homogeneous Neumann condi-
tion (corresponding to a zero flux) is imposed on the lateral
partsL of the domain (see Fig. 5),






ψ0 = −10m in Ω,

ψD = −10m onB×]0,T],

ψD = −75cm onT×]0,T],

v(ψ) · nΩ = 0 onL×]0,T].

The water content and the conductivity are defined by Van
Genuchten’s constitutive relationships, see Van Genuchten
(1980), and plotted on Fig. 6 :

θ(ψ) =
(θs − θr)

(

1+ (ξ|ψ|)β
)γ + θr,

K(ψ) = Ks

(

1− (ξ|ψ|)β−1(1+ (ξ|ψ|)β)−γ
)2

(

1+ (ξ|ψ|)β
) γ

2

,

with parameters

θs = 0.368, θr = 0.102, Ks = 9.22 · 10−3cm.s−1,

ξ = 0.0335cm−1, β = 2, γ = 1− β−1.

The evoked “stiffness” of this TC is related to the strong
constrained overpressure (equal to 9.25m) imposed on the
top of the column. A sharp variation of the conductivity
(K(−75cm)/K(−10m) = 8.92 · 104) is induced, see Fig 6.

We focus here on the horizontal mean value of the pres-
sure headψh(z) :

∀z ∈ [0, 100], ψh(z) =
1
20

∫ 20

0
ψh(x, z)dx.

Fig. 7 plotsψh(z) at 24h and 48h obtained with the meshes
(M4 - M4), (M5 - M5) and (M6 - M6). The DDFV pressure
profiles are depicted by solid lines and the SWIP pressure
profiles are depicted by dashed lines. Each method presents
one drawback when coarse meshes are used. For DDFV, a
delay of the pressure front is observed, especially when M4

is employed since a significant shift is observed between the
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1m

ψD = −75cm

ψD = −10m

vN = 0

T

B

L

L

•(0, 0)

Figure 5: TC2 - Polmann test case.
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Figure 6: TC2 - Constitutive curvesθ(ψ) andK(ψ).

two methods. For SWIP, non-physical oscillations appear
and could be reduced with the help of a slope limiter as in
Cockburn and Shu (1998). In this stiff case, only DDFV
satisfies the discrete maximum principle whereas SWIP has
a better estimation of the propagation speed of the pressure
front. When the meshes are sufficiently fine, the two meth-
ods yield the same pressure in agreement with Celia et al.
(1990) and Manzini and Ferraris (2004).
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Figure 7: TC2 - Pressure headψh(z) at 24h and 48h ob-
tained with different meshes for DDFV (solid line) and
SWIP (dashed line).

4.3 Anisotropic heterogeneous five-spot problem

This TC is inspired by the quarter five-spot problem studied
in Simmons et al. (1959), which reproduces an elementary



10 Preprint

cell of a periodic network consisting of sources and sinks.
The domainΩ = [0, 1]2 (in m) is divided into four parts (see
Fig. 8),

Ω1 = Ω ∩ {x+ z≤ 0.5}, Ω2 = Ω ∩ {0.5 < x+ z≤ 1},

Ω3 = Ω ∩ {1 < x+ z≤ 1.5}, Ω4 = Ω ∩ {1.5 < x+ z}.

The soil properties are the same as those of the previous TC
except for the piecewise constant intrinsic permeability,

K(x) =
4∑

i=1

1Ωi (x)Rωi DRt
ωi
,

where1Ωi (x) is the indicator function of the setΩi , D is a
diagonal matrix andRωi is the rotation matrix associated to
Ωi :

D =

[

1 0
0 10−3

]

and Rω =

[

cos (ω) − sin (ω)
sin (ω) cos (ω)

]

.

The angles of rotation are :

ω1 = π/4, ω2 = 0, ω3 = π/2, ω4 = π/4.

The matrixRt
ω denotes the transpose ofRω. This permeabil-

ity induces a preferential direction for the flow on each part
of the domain as illustrated on Fig 8.

The final time isT = 6h. An hydrostatic initial condition
is considered, an homogeneous Neumann condition is im-
posed on the boundary of the domain except on the top right
cornerC where an incoming fluxvN is enforced and on the
lineL = [0, 0.025]× {0} where a zero pressure condition is
applied,






ψ0 = −z in Ω,

ψD = 0 onL×]0,T],

v(ψ) · nΩ = vN onC×]0,T],

v(ψ) · nΩ = 0 onΓ×]0,T],

whereC = {1} × [0.975, 1]∪ [0.975, 1] × {1} andΓ = ∂Ω \
(L ∪ C). The functionvN (in cm.s−1) is defined as

vN(t) =






−5 · 10−3 t
1800

if t ≤ 0.5h,

−5 · 10−3 if 0.5h < t ≤ 4h,

0 if t > 4h.

The conditionvN = −5 · 10−3cm.s−1 onC corresponds to a
water injection of 9kgper hour.

Fig 9 shows that the triangles never cross the interface be-
tween each subdomain. The meshes are obtained from the
FreeFrem© software, which allows to define anisotropic het-
erogeneous metrics. Fig 10 plots isolines of the overpressure
ψT

h − ψ
0
h at the final time of the simulation. The two meth-

ods yield the same results for fine meshes (8760 triangles for

ez

ex

Ω1 Ω2

Ω3

Ω4

most permeable direction

•(0, 0)

•
(1, 1)

source

sink

Figure 8: TC3 - Five-spot problem in anisotropic heteroge-
neous media.
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Figure 9: TC3 - Example of anisotropic heterogeneous
mesh.

DG, 16446 for DDFV). Concerning the convergence of the
solution ash tends to 0, SWIP needs further refinement than
DDFV when isotropic meshes are used. Therefore, DDFV
is less sensitive than SWIP to the choice of the mesh when
an anisotropic permeability is considered.

Fig 11 and Fig 12 present results on mass conservation.
Multiplying equations (6) and (7) by the water densityρ,
and summing over the time intervals in [0, nδt] leads to

ρ(Vn − V0)
︸        ︷︷        ︸

∆Mn

=

n∑

i=1

ρδtΦi
N

︸ ︷︷ ︸

M
i
in

+

n∑

i=1

ρδtΦi
D

︸ ︷︷ ︸

M
i
out

+

n∑

i=1

ρen

︸︷︷︸

En

.

∆Mn is the total mass variation over the time interval [0, nδt]
and the quantities

∑n
i=1 M

i
in,

∑n
i=1 M

i
out and

∑n
i=1 |E

n| are
respectively the total water inflow, the total water outflow
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and the total mass balance defect cumulated at timenδt.
The quantities∆Mn,

∑n
i=1 M

i
in and

∑n
i=1 M

n
out are close for

the two methods and three phases are clearly recognizable
on Fig 11. The first phase [0, 1h] corresponds to the soil
saturation : the total mass variation equals the total water
inflow. The second phase [1h, 4h] features soil saturation
and drainage : the total mass variation increases more
slowly than during the previous phase because exfiltration
occurs. The last phase [4h, 6h] is the soil drainage only
since the injection is stopped, inducing a diminution of the
total mass variation.
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Figure 10: TC3 - Isolines of overpressure at 6h for DDFV
(top) and SWIP (bottom).

The total mass balance defect (or mass error)
∑n

i=1 |E
n|

is plotted on Fig 12, where various tolerancesǫ in the lin-
earization algorithm are tested. Whenǫ = 10−3, the defects
look similar, but lowering the tolerance has no improving ef-
fect with SWIP. Mass error can be reduced by using higher
order approximations instead. Meanwhile, about two orders
of magnitude can still be gained with DDFV before conver-
gence, which is achieved forǫ = 10−5.
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Figure 11: TC3 - Mass repartition for DDFV (solid lines)
and SWIP (dashed lines).
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Figure 12: TC3 - Mass error for DDFV (solid lines) and
SWIP (dashed lines).

5 CONCLUSION

We presented a comparison between a discontinuous finite
element method and a more recent finite volume scheme on
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various test cases. As was presented in section 2, the ap-
proaches are quite different and the numerical results high-
light different behaviors. First, DDFV provides a sparser
structure than SWIP which produces in return a narrower
bandwith and a better condition number. In the stiff case,
DDFV verifies the discrete maximum principle while SWIP
evaluates better the speed of propagation for coarse meshes.
Finally, in the quarter five-spot problem, the two methods
are in accordance for the overpressure and the mass reparti-
tion over time. The mass balance defect can be considerably
lowered with DDFV by requiring a more restrictive toler-
ance in the Picard algorithm.
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