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Résumé — Comparaison des méthodes DDFV et DG pour des écoulements digunporeux
hétérogene anisotrope— Nous présentons un travail préliminaire visant a simulejdttion de gaz
dans les aquiféres profonds. Des écoulements instati@snaionophasiques sont considérés. Nous
comparons des schémas volumes finis en dualité discréte (DBf-de Galerkin discontinu (DG)
utilisés pour discrétiser le termefidisif. Une formule de dférentiation rétrograde d’ordre deux est
utilisée pour la discrétisation en temps. D'une part, [d®stas DDFV sont simples a implémenter,
préservent les propriétés physiques et présentent sounersiper convergence en norbfe D’autre
part, les méthodes DG sont flexibles, permettent des ordgre®avergence arbitrairement élevés et
leur fondement théorique en font un choix adapté a de nomim&lblemes. La méthode de Galerkin a
pénalisation intérieure pondérée symétrique est choésis de travail. La précision et la robustesse de
ces deux schémas sont testées et comparées sur des caanéstsnetamment en milieu hétérogene
anisotrope.

Abstract— Comparison of DDFV and DG methods for flow in anisotropic hetgeneous porous
media — We present a preliminary work to simulate gas injection @eml aquifers. Unsteady
single-phase flows are considered. We compare Discreteitpihite Volume (DDFV) and Discon-
tinuous Galerkin (DG) schemes applied to discretize tifaslive term. The second-order Backward
Differentiation Formula is used for the time-stepping method. tii2 one hand, the DDFV methods
are easy to implement, ensure a preservation of physicagsties and gfer superconvergence in the
L2-norm on a regular basis. On the other hand, the DG methodslexéle, allow arbitrary order of
accuracy, and their ample theoretical foundation make tlaemliable choice for many computational
problems. We consider here the Symmetric Weighted Int®eoalty Galerkin method. Accuracy
and robustness of these two schemes are tested and compasatious test cases, especially in
anisotropic heterogeneous media.
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1 INTRODUCTION metric interior penalty Galerkin method used in Bastian
o ) ) . ) (2003), Klieber and Riviere (2006), Sochala et al. (2009).
Prediction of fluid flows in geological subsurface is a keyHere, we choose the symmetric weighted interior penalty
process in many applications like groundwater hydrologypg method (SWIP), because it preserves the natural sym-
oil recovery, and more recently G@eological storage and metry in the discrete éiusion operator and usesfiision-
deep geothermal science. Several works are devoted 0 dgspendent weighted averages to reduce the amount of sta-
sign numerical schgmes_(llst_ed below) fo_r simulating thesgjjjization required, Di Pietro and Ern (2012). Regard-
types of flows. This article is a comparison of two CON-ing time discretization, we propose to use the second-order
servative methods which are accurate. paving a second- packward diferentiation formula (BDF2) from Curtiss and
order convergence), robustin anisotropic heterogeneeds Myjjyschfelder (1952). This implicit scheme avoids the CFL
dia (.e. with a diffusivity tensor inducing a space-dependentcyngition particularly restrictive for explicit scheme$ien
preferential direction for the flow) and valid for general ihe gifusion term is present. Furthermore, BDF2 is more
meshesi(e. not only for K-orthogonal meshes). We presentegcient than implicit Runge-Kutta (DIRK) schemes, which
a preliminary work dedicated to single-phase flows. An exyequire several stages (three for the second-order v@rsion
tension of this study is to consider two phases (gas and Wiesides, the last stage of DIRK schemes is ill-posed where
ter) in the frame of C@injection in deep aquifers. _ the soil is saturated, as was underlined in Sochala et al.
A various choice of methods is available to approximatg2009). Finally, BDF2 is preferred to Crank-Nicolson which
nonlinear difusion equations. For instance to discretize theg ot | -stable, Hairer and E. (2010).
Richards equation, Celia et al. (1990) consider finite ele- The aim of this work is to test and compare the DDFV
ment (FE), Narasimhan and Witherspoon (1976) apply finitenq swip schemes for solving flows in anisotropic hetero-
volume (FV) with two-point flux approximation, Manzini geneous porous media. We propose to consider the conser-
and Ferraris (2004) use diamond cell FV, and Knabner an8ative form of the Richards equation in a two-dimensional
Schneid (2002) employ mixed finite element (MFE). Severalyomaing,
other FV methods and variants exist, including the MPFA,
SUSHI and VAG schemes, see Eymard et al. (2012) and ref- |0:0(¥) = V- (K@) (V¥ + &)) = f in Qx]0,T],

erences therein for details. In this work, we propose am-alte |y = y° in Qx {0},
native approach by applying and comparing DDFV and DG | =y, on 6QPx]0, T], ()
methods. The DDFV methodology was introduced about ten “KW)(VY + &) - No = Wi on 8QNx]0, T]

Z, - B )

years ago by Hermeline (2000). It has been applied to a vari-

ety of problems over the past few years, from isotropic scalawhereT is the final time of simulationpQP (resp. oQN)
diffusion with Domelevo and Omnes (2005) to electrocardithe boundary of2 where a Dirichlet condition/p (resp.
ology, see Coudiére et al. (2009), among others. This F\Weumann conditiony) is applied, andg the outward unit
method is a natural choice because it has proven robustormal of 9Q = QP U dQN. The vectore, = (0,1)' is
ness when applied to anisotropic and heterogenedtis di the gravity contribution. The pressure heads the un-
sion problems on general, most notably non-matching ankinown and is related to the velocitythrough Darcy’s law
distorted meshes. It is locally conservative and preservegy) = —-K(y)(Vy + €,). Two constitutive relationships
the symmetry of the continuous problem, which alloise ¢ — 6(¢) andy — K(y) are necessary to close the model.
cient iterative solvers to be employed. Besidedfits aL>-  Examples of water contemtand conductivityK are indi-
norm superconvergence on various examples, together wittated in subsections 4.1 and 4.2. For the sake of simplicity,
a very accurate appoximation of the gradient, as was notedle suppose that the source tefiis equal to zero (except for

in Herbin et al. (2008). In this paper we adapt a versiorthe validation test case described in subsection 4.1). We in
of the DDFV scheme described in Coudiére et al. (2009)yestigate three test cases (TC) to compare DDFV and SWIP
Krell (2010) which allows discontinuities of the permeabil methods in several configurations. TC1 and TC2 are column
ity tensor along faces. DG methods have appeared thirtinfiltration problems in an isotropic homogeneous soil. TC1
years ago with Lesaint and Raviart (1974) and dfieient  has an analytical solution and permits to validate the cenve
to approximate equations present in engineering sciencegence rate of the methods. The stencil of the DDFV method
Advantages of these methods are multiple especially the Igeroduces a sparser matrix than SWIP. In return, the latter
cal conservation (as with FV and MFE). The order of accudeads to a narrower bandwith and smaller condition num-
racy (as FE and MFE) can befidirent for each element of bers. TC2 features a fitipressure front which highlights
the mesh, facilitating the-refinement. The flexibility in the significant diferences for coarse meshes. DDFV underesti-
use of non-matching meshes (as FV) is particularly adapmates the front propagation speed while SWIP presents non-
tated for theh-refinement. Several DG methods can be useghysical oscillations. TC3 is a quarter five-spot configura-
for one-phase and two-phase flows in porous media, sudion in an anisotropic heterogenous soil. The two methods
as the local DG method described in Bastian et al. (2007pnly differ in the evaluation of the mass error, depending on
Fagherazzi et al. (2004) and the non-symmetric or the synthe choice of the nonlinear solver tolerance.
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The outline is as follows. Section 2 introduces the space
discretization associated with DDFV and SWIP methods.
Section 3 describes the time discretization performed by th
BDF2 formula and the Picard fixed point algorithm used to
solve the nonlinear discrete system. Section 4 details the
results on the three TC described above. Conclusions and
perspectives are drawn in Section 5.

2 SPACE DISCRETIZATION

2.1 Notations

Let {Th}n-0 be a shape-regular family of unstructured me- A
shes ofQ consisting for simplicity of &ine triangles. For
an elementr € 7y, let v denote its boundary ana} its
outward unit normal. The s&t, of mesh faces is partitioned
into 7! U 7P U 7N, whereF] is the set of internal faces
and#,> (resp. 7)) is the set of Dirichlet (resp. Neumann)
faces. For a face € F}, there exist™ andr™ in 7} such
thato = ar* N dr~. We denote by, c Fy, the set of the
faceso such thar = U,cr, 0, and byFs c F1, the set of
the facesr tha’F shares as a vertex. We dgflne:, as the unit Figure 2: Cells (in gray) of the secondary mesh used in the
normal too- pointing fromT‘ to _r* (se.e-Flg 1)-. ' DDFV method.

The setS;, of mesh vertices is partitioned int}, U SP U
SN whereS!, are the interior verticess\ gathers all the end-
points of the edges iﬁ‘hN andSﬁ are the remaining bound- 2.2 Discrete Duality Finite Volume method
ary vertices. A secondary mesh is associated to thiSget
as follows: any vertes € S, U S} is associated to a unique The DDFV method approximates the averageyafn each
polygonal cellS whose vertices are the centers of the tri-control volumer € 7}, and on each control volunte asso-
anglesr and the midpoints of the facesthat shares as a ciated to a vertes € Slh U S”. Hence we define the discrete
vertex; and which contairs(see Fig 2). Consequently, each DDFV unknown as
faceo is associated to its two neighbouring celtsandr~ def
and its two vertices, denoted Isy ands™. The following Qn = {\Ph = ‘/’S)TE’Th,SGSLUSE}'

orientation assumption is made for these notations: Several functions can be associated to these degrees of free
dom, for instance the usual piecewise constant function on
eachr € 7T, (or its sibling piecewise constant on eagffior
s € 8y), but also the functiogyy, that is piecewise linear on
the triangles with base and vertexx. (for all r € 71 and
o € F;) and such thatn(x;) = ¢, andyn(Xs) = ¥s.

If we integrate equation (1) on a control volures 75,
we get :

primary mesh

secondary mesh

det(®+ — X-, Xg+ — Xg-) > 0,

although the complete orientation is arbitrary and irrafev
in the sequel. Herex; is the center of gravity of € 74
andxs are the coordinates agfe Sp. We also denote by,
the midpoints of the faces € Fy (see Fig 3). Note that a
faceo c 9Q has only one neighbouring triangle which is

denoted by~ in the sequel, so that the nornmgl is also the d

unit normal todQ outward ofQ. dat frg((/,) _Z* f( KW)(VY + &) ne _Z W= 0
The DDFV method couples, through the flux computa- oeFt

tions, two finite volume schemes written on a primary meSnNhereFL\‘ -F.n 7_—hN andF* = F, \ FN. Note that the flux

Th (considering the cells as control volumes) and on a _K(y)(Vy + &) - n, is continuous through each fageof .

secondary meslS;, (considering the cell§ as control vol- The DDFV scheme reads, for any control volume 7,
umes). Hence the DDFV discrete unknown is a set of de-

grees of freedon¥}, that eventually defines a functign, E
(section 2.2). The DG method directly defines a discrete un-dt
known functiony, (section 2.3) and is based on a discrete
variational formulation. wherey, - (resp.V,.Vn) approximates (respVy) on the
sider of the faceo, the normalN, = |o|n,. is the normal

oeFN

|T|9(¢‘r) _Z K(lp(r,r) (V(T,T\}lh + eZ)' No— _Z V(r = O: (2)

oek; oeFN



to o~ outward ofr accounting for the length eof andV,. ap-
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is the flux froms to the opposite endpoint of. The flux

proximatesf(r vn. Note thatin the TC presented in section 4, F is continuous through the interface betwegnand S*
the boundary data is piecewise constant and we can take ey construction. We ensure the continuity of the flukes:
actlyV,, = f(r vn. There are several possible choices for thehrougho by introducing an auxiliary unknowy,- used to

valuey,.. We take here

1
Yor = é('ﬁr‘*"ﬁ? +¢s*)»

because it seems to provide the best accuracy and robust-

ness. For each vertese SE, we choose to takes = ¥p(Xs)
from the Dirichlet boundary data. For any control volugie
associated to a vertexe S, U S, the discrete equation is

1810069~ (K(bir) (Vs ¥+ €) - Ne

oeFg

+ KWor) (Vorr P + €) - Net)
= 3 (KWoe) (Vor¥n + &) Ne + Vo) = 0, (3)

oeFY

whereFY = Fsn FN andF; = Fs\ FY. In these sum-
mations, ifo- € Fg then the vertexs is identified tos™, the
neighbouring triangles are" and the interface between the
control volumes associated$o ands* has two partg" and
e, of which the corresponding normals &g = n:|€*| as
depicted in Fig. 3. Itr € FY, then there is only one triangle
7 neighbouringr but the flux still has two terms, one along

compute the gradienté, -V, and V. .-, following the
DDFV strategy from Coudiére et al. (2009) :

1

V()',T‘\Ph = 2D(r,'r* ((Wa - ';DT‘)N(r + (',Ds+ - l,bs—)Ne-)
1

Vor ¥ = g (0 — VN + s —vsINe),

where D, .+ = + detX,+ — X, Xs+ — Xs-), meaning thabD,, .+
are the areas of the triangles with basand vertices«-.

In the boundary case € ThN, there is only one gradient,
namelyV, -¥h. The auxiliary unknown is then the unique
solution to the linear equatidf,. - +F, .+ = 0inthe general
interior case and to the linear equatibp .- = V., in the
boundary case. Then the flux between the primary eglls
is Fr = Fy.r- = —F4+ and the scheme (2)-(3) reads :

%MW—ZB—ZW=Q

oeF; (rEF',\‘
d
§i/SI6Ws) ~ 3 Fe= > Vus=0.
oeFs oeFY

In view of the expression of the fluxes and the gradients,

the edgee defined as in the previous case (with the normalve adopt some additional notations in the general interior

Ne = ngle]) and one along the linex{, x,) ¢ o. The num-

case. On each side of o, we define the following Gram

berV, s approximates the integral of the Neumann boundarynatrices :

data along this line. Given a facee ﬂ, we denote by

S+

S
Figure 3: Notations for DDFV method.

- Fo’,‘ri

iK(';bo’,‘ri) (V()',‘ri\}lh + eZ) : No—

the fluxes out ot~ andt* through the face- and by
Fe = KWor) (Vor-Ph+ &) - Ne-

+ K(l//(r,-ﬁ) (V(r’-ﬁl{lh + ez) . Ne+

the total flux froms™ to s* through the interfac&™ n S*.
Given afacer € “FhN N F, and an endpoird of o,

Fe = K(‘/’(r,‘r) (VO',T\Ph + ez) . Ne

1

a by def
b. C) 2Dy

anda., B. are defined similarly by

)
B
Hence the equatioim ¥, F, - + F,-+ = 0 now reads

&(wa_wr’)+b*(w§_w§)+a7 = ar('wz’r*_'»l’fr)+b+(¢’s+_¢’§)+a+
and can be easily solved. Afterwards, we replagdy its

expression and find that the calculation of the flukgsand
Fe can be carried out as follows:

K () (N ),

def

N
KWors)e; (Ng) .

Fo' ‘/’T* - lﬁr
= ¥ — b, (Ph),
) w4 -
with
aa, a.b_+a b,
A(r(lPh) _ [ aL:a+ aL+a+b N 2]
a+2:+;b+ Cit+C — (a+_+a;)
Ao +aa,
by (¥h) = —[ ares ]
B-+B+ - tif; (s —a-)
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In the case of a facer ¢ ?hN N 7, we assume that the b, &) dzeff V- (KW)e) ¢ — Z (Wn + K@1)es - Na)e
neighbouring triangle is 7~ and the equation o#, reads ' Q

a (Yo —¥r) + b (Ys — ¥s) + @ = V,. Itis solved easily 7
and results in the expression + Z (—K(wm Voo + TZ_K¢) Vo,
b? b_ b oery 7
Fe= (C— - z) (s —¥s)+p- — za— + zVa-

_ 5 ) A specific choice of the weights is made to yield robust error
Lastly, if o € 7", the quantityFe does not need to be de- estimates with respect to thefisitivity,
fined, as onlyF, adds a contribution to the system. In this

case, the auxiliary,, is chosen ag, = %(l//g + s ). S 52
By assembling these local contributions, the semi-discret W = _—K“+ and o = %
DDFV scheme finally reads Okn + Okn Okn + Okn
d )
Mhd—t®(‘Ph) + An(Ph)Ph = bn(Ph), (4)  with 6% = K*n, - n, for o € F. In the penalty termy

) ) is a positive parameter (to be taken larger than a minimal
where®(¥h) = (6(¥), 6(¥s))rer;, sesjusy> Mnis adiagonal  threshold depending on the shape-regularity @ andd,
mass matrix andw('t') is a symmetric and positive matrix. ig the diameter of the face, i.e. the largest diameter of the

triangle(s) of whichr is a face. The cdBcientyy is defined

2.3 Discontinuous Galerkin method as
: : : : 26kn5;n ; i
The Discontinuous Galerkin methods are based on varia- def | 5= 4 o0 if o€ Fp,
tional formulations (as for the classical finite elementheT Yk =1 %n * %n . 5
discontinuous finite element spadgis defined as SKn if oeF’,
Vi €'g € L2(Q), Vr e T P
h = {¢ € LYQ), Y1 € Th, ¢l € Pp(7)}, with 6k, = Kn,, - n,. The above choice af~ andw* leads

wherelP,(7) is the set of polynomials of degree less than orl® the harmonic mean of theflisivity tensor,

equal top on an element. We observe that the functions

in V}, are not necessarily continuous. This fact is exploited 26,0k

by selecting basis functions which are locally supported in {KWk) Voo No = ﬁ(vwf‘ + Vilee).
a single mesh element. As a consequence, when a trian- " "

gular mesh and &;-Lagrange approximation are chosen,
the unknowns are localized at the vertices of each triangl

as illustrated on Fig. 4. A linear approximation yields thethe harmonic mean value of theflisivity is close to the

same order of convergence as DDFV, thou.gh hlgher-.ordqlr lue in the poorly conductive medium, Di Pietro and Ern
elements could also be considered. We define the we|ght? 012)

average operatdi, . and the jump operator []as follows:
for a function¢ which is possibly two-valued osr,

Using harmonic means is particularly adapted at an interfac
Between poorly and highly conductive media. In this case,

Again, by assembling the local contributions, the semi-
discrete DG scheme takes the form of (4), whbftigis a

def _ . + ot def . .4 block diagonal matrixAy, is a block matrix and, is the set

oo = wg+ore and kle =& -& of the values ofyy, at each degree of freedom.

where&* = ¢-. For boundary faces¢},» = ¢l and
[€], = ¢|,. For vector-valued functions, average and jump
operators are defined componentwise. For the Richards DDFEV DG -P;
equation, the SWIP method can be written as

%LG(%W + an(¥n, ) = bn(¥n, ¢), Av Av
where for (¢, ¢) € Vh X Vp, v v

aw.0)® [ k@wo-vor 3 B [ e,

U'E‘Tl.il U‘7:hD

- Z (W] AK W) Voo + [S]lAKWr) Voo )Mo, Figure 4: Unknowns localization for each method.

; o
oeFy U‘7:hD
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3 TIME DISCRETIZATION AND NONLINEAR n, a sequencel("m-o defined by the recurrence relation
RESOLUTION P = ™ 4 sPR™ together with a second-order ini-
tialization : W[° = 3¥0-1 — 3¥1-2 + Y13 for n > 3, (and
PO = w0 w20 — 2pl w0y \We use the LU decomposition
for solving each linear system and our stopping criterion is
(ﬁcS‘PE’m||2||‘Pﬂ*1||51 < €, wheree is the user-defined tolerance.

3.1 Backward Differentiation Formula

The next step consists in approximating the time derivativ
in (4). We propose the second order Backwartfédentia-
tion Formula (BDF2) :

d 1 3.3 Mass conservation properties

3 1.,
dt _5t(2yn_2yn )

The study of the mass evolution and repartitioe.(he sep-

where the superscriptdenotes the time level, atlis the ~ aration over time of the mass variation in the domain, the
constant time step, chosen such thadt is an integer. Sub- Mass inflow and the mass outflow) helps to understand the

stituting the last expression in (4) finally yields the foliag ~ Pehavior of the system. It also allows to quantify the mass
fully discrete scheme: defect generated by the linearization algorithm. The va@um
of water in the domai® at timenét is obtained by integrat-

3 ing the volumetric water content i,
vn> 2, Z—&Mhe)(\}‘ﬂ) + An(Pp)¥h

2 1 i vn & f 0.
= D) + 2 MAO(E] ) — S MAO(H ) 2"

The vector‘I’ﬁ is computed by the Crank-Nicolson scheme. By using the BDF2 formula, we have

1
gv“ —2vly Ev”—2 =(Fh+FR)ot+e",  (5)
3.2 Linearization algorithm

where the quantitieB]) andF[, are defined as
The above is obviously a nonlinear system, and may thus
be solved through an iterative procedure, which we describe Fo def _f v, and Fy def _ VAR
in this section. The iteration level will beffered to as the aQP AQN
superscriptn. As suggested in Manzini and Ferraris (2004),

. . . . ande" stands for the numerical error in the resolution of the
we use the Picard fixed point method to obtain : N

nonlinear system. The reconstructed normal velogjtyon
3 a Dirichlet facer is estimated from the pressure,
_Mh®(\PE,m+l) + Ah(\PE,m)\PE,erl

26t
1 1 - .
= bn(¥p™) - 5 (—ZMh®(‘P2‘1) + EMh(a(Wg—Z)). i K", )(Vor ¥R +e)-n, for DDFV,
AV =
h 7 7Yk
o : V(¥plo) - o + Ylle —yp) for SWIP
To complete the linearization, we now use the following Whle) d- Wy o)

Taylor series expansion : The variation of the volume of water over the time step

50 [(n—121)ét, nét] is deduced from a reformulation of (5), yield-
O) = O(x) + =5 (X) - (y — X), ing
V-Vl = (0 + o) ot + €, 6
which we apply withx = ¥"™ andy = ™. Finally, the ( P N) ©)
system to solve is : where the fluix®@" € {®]), O} and the errog” over the time
step [ — 1)dt, nt] are defined as
3
EMhau,@(\}'ﬂ’m) + 6tAh(‘PE’m)) Y™ = oth(YR™) on an N 1 o™, and &% gen N 1 ey
3 3 3 3

The initialization of the fluxes recursive formulas depends
on the scheme used at the first time step. For the Crank-

A (Sep 1
—ot ( E,m) E,m_ h (5 ( E,m) _ 2@(\{1271) + E@(\}/RZ)) ,
Nicolson scheme, the global mass conservation is written as

. 1
wheres¥P™ = ¥P™! — ™ is the unknown of the sys- VI-VO = (@f + Oy )ot+ € with @'= > (FO+Fh).
tem. In this form, the algorithm produces at each time level (7
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4 RESULTS Euler relations. We have therefore constructed two familie
of unstructured meshéM;}i<i<e and{M}1<i<s respectively
We propose three TC with increasingffitiulties corre- for DDFV and SWIP, and such that the number of unknowns
sponding to a more general form of the conductivity definedor M; and M; are close. For each mesh, Tab. 1 refers to
as Nn, Nt and Ny. The number of nonzero elementaz the
mean number of nonzero elements per @ (= nnz/N,)
Ky, X) = p—gk(xp)K(x), and the bandwidthw of the corresponding matrix (obtained
v after a reverse Cuthill-McKee ordering, see Cuthill and Mc-
wherek(y) is the relative permeabilityk(x) the intrinsic  kee (1969)) are also indicated. The first remark is that the
tensor permeability of the soih, g andy are respectively nymper of nonzero elements isfidrent for each method
the fluid density, the gravity constant and the dynamic Vissjnce it depends on the stencil. By considering fine meshes
cosity. We first consider two downward infiltrations in an (typically Ms, Mg, Ms andMs), we have for DDFV,
isotropic homogeneous mediuie( K = T). The first TC
presents an analytical solution to verify the theoretical-c

vergence rates and the second TC is the propagationdfasti ., 7N, + 13N, = fAz~ INe+13Nn
pressure front. We also study the quarter five-spot problem N; + Ny — NP ’
in an anisotropic heterogeneous mediura. (K # I and is )

space-dependent). while we have for SWIP,

35N - 2Ny +2)

nnz= 9(5N; - 2N, + 2) = nnz= N
t

12
4.1 lIsotropic homogeneous validation test case
The second remark is that the bandwidth is smaller for SWIP
We propose a TC with an analytical solution to compare thgyhich has a more simple connectivity graph due to the block
two methods in terms of matrix properties and convergencgtrycture of its matrix. To sum up, DDFV requires less stor-
The domain i€ = [0, 4] x [0, 20] (incm) and the final time  age capacity whereas SWIP seems mfdieient for solving

T = 2min. The analytical solution each linear system.
Wz t) = 20.4tan7'{0.5(z+ o 15)} _411 TABLE 1: TC1 - Meshes used for DDFV on the top and
12 SWIP on the bottom.

is used to determine adequate source term and Dirichlet
boundary condition enforced d@if2. The water contentand  Mesh N, N N, nnz nz  bw
thg conductlwty are deflngd by Haverkamp’s constitutive r.e My 28 34 42 234 56 6
lationships which are derived in Haverkamp et al. (1977) :

M2 79 118 159 1127 7.1 16

M3 253 430 609 4897 80 34

o) = 2 g and K@) = —2—, Ms 917 1688 2461 21009 85 58

1+ oy 1+ Ayl Ms 3380 6474 9570 83742 8.8 145

with parameters Mg 13233 25896 39031 348595 8.9 267
) . My 13 16 48 504 105 12
03 = 0287, Gr = 0075, a = 0027lcm7 N ﬂ = 396, MZ 40 54 162 1728 107 15
Ks=944-103%cms™?, A=00524cm?, y=474 M; 128 204 612 6894 113 24

M, 464 826 2478 28836 11.6 57
Ms 1702 3198 9594 113292 11.8 96

{Nt +No—N® for DDFV, Me 6591 12780 38340 456480 11.9 196
Ny =

For a mesh, the number of unknowNgis

3N for DG - P, Tab. 2 presents the errors on the hydraulic heagland

. . on the velocit for all the meshes,
whereN; is the number of triangle$\, the number of nodes ¥o

andNP the number of nodes where a Dirichlet condition is max [[y" - yhllLz)

enforced (and which is equal to the number of nodes locatedg, , = 2=\ . . eo= IV = Vhlliz@xo.rp

on Q). Consequently, the number of unknowns for DDFV Jmax [z ’ Ml (@xqom)

is about half the number of unknowns for SWIP when the

mesh is sfficiently fine {.e. N, > NP): For the two methods, the results confirm theoretical estima-

N;+Np—NP =~ N;+ Ny, ~ 3/2N;, becausé\; ~ 2N, fromthe  tions since a second-order convergence is observed on the



8 Preprint

TABLE 2: TC1 - Convergence results for DDFV on the top TABLE 3: TC1 - Mean number of iterations and mean con-

and SWIP on the bottom. dition number.
Mesh 6t &0 &0 Mesh DDFV SWIP
error rate error rate Nit % Ni )
Mo 4 3aes 246 4imez 226 L 29 68123 a0
M2 2 1-009'3 1.90 1-919'2 1.23 2 18 120.5 1.2 2.1
3 008 ' S ' 3 1.0 203.6 1.1 46
My 1 251le4 223 9.41e-3 1.14 4 10 4321 10 116
Ms 1/2 6.29e-5 2.03 459e-3 1.05 5 1'0 813.7 1'0 24.8
Me 1/4 1.58e-5 1.99 2.28e-3 1.01 6 10 1625.4 10 545
M1 8 4.5le-2 3.25e-1
M2 4 4.40e-3 2.60 1.17e-1 0.70
M3 2  1.10e-3 2.00 591e-2 0.99 bottom$ of the column. An homogeneous Neumann condi-
My 1 2.70e-4 217 294e-2 1.08 tion (corresponding to a zero flux) is imposed on the lateral
Ms 12 6.4le5 226 1.42e-2 114 PartsLofthe domain (see Fig. 5),
Ms /4 1.59e-5 1.92 7.09e-3  0.96

Yy%=-10m in Q,

P =-10m on8Bx]0,T],

hydraulic head and a first-order convergence is verified on yP = -75cm on7x]0,T],

the velocity. _ V() -na =0 onLx]0,T].
Tab. 3 reports the mean numbig of iterations in the

linearization algorithm and the mean condition nunger

The water content and the conductivity are defined by Van
Genuchten’s constitutive relationships, see Van Genuachte
(1980), and plotted on Fig. 6 :

-1 n,m
N - L - A 05— 6r)

Ni=— SN0 and @:( N”) ( L) gy _E=0)
I 2N zm: T W= T @y
where N is the number of iterations performed at time K() = Ks(l— @1 L+ EwP))?

m ’

level n and Ay (resp. Ay is the maximal (resp. min- (1 + ()P

imal) eigenvalue of the matrix at the-th nonlinear itera- .

tion of then-th time step. We observe that the mean con-Wlth parameters
dition number is inversely proportional to the mesh dize 6= 0368 6 =0102 Ks=922-103%ms?,
This is consistent with a finite fference result which states

that the condition numbe, is proportional toh=2. Fur- £=00335cmt, g=2, y=1-p"
thermore, the SWIP method significantly reduegs (by ) y . .
a factor of 1.5) an&% (by a factor of 6) obtained with the The evoked “stifness” of this TC is related to the strong

; S . onstrained overpressure (equal t8%n) imposed on the
most classical symmetric interior penalty galerkin methO(fOp of the column. A sharp variation of the conductivity
(which usesw* = w~ = 0.5). To balance the various er- K(—75cm)/K(—10rﬁ) — 8.92- 10" is induced, see Fig 6
ror sources (due to space and time discretizations as well "SSWe focus here on the' horizontal mean vélue of the. pres-
nonlinear systems resolution), an adaptive inexact Newtors1ure headin(?)
method and adaptive time-stepping basedaoposteriori me -
estimation could be implemented, as was done in Ern and . 20
Vohralik (2010). ¥ze[0,100] yn(2 = 20.J, Un(X, 2)dx

Fig. 7 plotsyn(2) at 24 and 48 obtained with the meshes
4.2 Isotropic homogeneous stiff case (M4 - My), (Ms - Ms) and (Ms - Mg). The DDFV pressure

profiles are depicted by solid lines and the SWIP pressure
This TC is a sfff infiltration problem proposed by Celia et al. profiles are depicted by dashed lines. Each method presents
(1990). The domain i® = [0, 20]x [0, 100] (incm) and the  one drawback when coarse meshes are used. For DDFV, a
final time isT = 48h. A constant initial condition is consid- delay of the pressure front is observed, especially whgn M
ered. A Dirichlet condition is imposed on the tBpand the  is employed since a significant shift is observed between the
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M4s-M
Yp = —75cm am v
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B -a00f
L T
w=0 N Im L el
>
g
:|>:‘ -800 [
-1000
(0.0) &2
Yp = -10m 1200 80 100

Figure 5: TC2 - Polmann test case.
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Figure 6: TC2 - Constitutive curvesy) andK(y).
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two methods. For SWIP, non-physical oscillations appear

and could be reduced with the help of a slope limiter as in

Cockburn and Shu (1998) In this fﬁtbase, Only DDFV Figure 7: TC2 - Pressure heﬁ(z) at 2 and 4% ob-
satisfies the discrete maximum principle whereas SWIP hagined with diferent meshes for DDFV (solid line) and
a better estimation of the propagation speed of the pressugy|p (dashed line).

front. When the meshes arefBaiently fine, the two meth-

ods yield the same pressure in agreement with Celia et al. _ ) ]
(1990) and Manzini and Ferraris (2004). 4.3 Anisotropic heterogeneous five-spot problem

This TC is inspired by the quarter five-spot problem studied
in Simmons et al. (1959), which reproduces an elementary
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cell of a periodic network consisting of sources and sinks.
The domaim = [0, 1]2 (in m) is divided into four parts (see

Fig. 8), 1] @1)
sourcef—
Q=0nNn{x+z<05}, QH=QnN{05<x+z<1}, /
Q3=QN{l<x+2z<15), Qu=Qn{L5<x+2. l Q4
The soil properties are the same as those of the previous TC Q3
except for the piecewise constant intrinsic permeability, —
e L
4 Q Q
K = > 1o, ()R,DR, . & 4
i=1 (0,0) sink
wherelg, (x) is the indicator function of the s&;, D is a
diagonal matrix an@,, is the rotation matrix associated to <~ most permeable direction
Q;:

Figure 8: TC3 - Five-spot problem in anisotropic heteroge-
neous media.

1 0
Dz[o 10°

_|cos) —sinWw)
and R“'_[sin(w) COoS W)

100

The angles of rotation are :

wr=n/84, wr=0, w3=n/2, ws=r/4 ?

The matrixR!, denotes the transposeRf. This permeabil-
ity induces a preferential direction for the flow on each part
of the domain as illustrated on Fig 8.

The final time isT = 6h. An hydrostatic initial condition ©
is considered, an homogeneous Neumann condition is im-
posed on the boundary of the domain except on the top right
cornerC where an incoming fluxy is enforced and on the
line £ = [0,0.025]x {0} where a zero pressure condition is
applied, 0

0 20 40 60 80 100

VAKINAY

o .
Yy ==z in Q, Figure 9: TC3 - Example of anisotropic heterogeneous
yP =0 on£x]0, T], mesh.

v(y) -ng =vy 0onCx]0,T],

V() -ng =0 onI'x]0,T], )
@) na 10.7] DG, 16446 for DDFV). Concerning the convergence of the

whereC = {1} x [0.975 1]U [0.975 1] x {1} andl" = dQ \  solution ah tends to 0, SWIP needs further refinement than

(£ U C). The functionvy (in CmS_l) is defined as DDFV when isotropic meshes are used. Therefore, DDFV
is less sensitive than SWIP to the choice of the mesh when
-5.103%— 1800 if t < 0.5h, an anisotropic permeability is considered.
w(t) =1_5.103 if0.5h < t < 4h, Fig 1_1 and Fig_12 present results on mass conser_vation.
Multiplying equations (6) and (7) by the water density
0 if t > 4h. and summing over the time intervals in [&t] leads to

The conditionvy = —5-10~3cms™ on C corresponds to a

water injection of &g per hour. _\/° i [
. : . = Sty + St + e .
Fig 9 shows that the triangles never cross the interface be- )= Z POTEN Z po=To Z P
. X —— i=l —— izl ~—(— izl ~——
tween each subdomain. The meshes are obtained from the AMP M M En

out
FreeFrer® software, which allows to define anisotropic het-
erogeneous metrics. Fig 10 plots isolines of the overpressuAM" is the total mass variation over the time intervaliét]
Yl — ¢} at the final time of the simulation. The two meth- and the quantities;?, M , ", M} . and ¥, [E"| are

ods yield the same results for fine meshes (8760 triangles foespectively the total water |nflow the total water outflow
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and the total mass balance defect cumulated at tifte
The quantitesAM", ¥, M|, and 3], M, are close for

the two methods and three phases are clearly recognizable
on Fig 11. The first phase [@h] corresponds to the soil
saturation : the total mass variation equals the total water
inflow. The second phase j14h] features soil saturation
and drainage : the total mass variation increases more
slowly than during the previous phase because exfiltration
occurs. The last phaseH&h] is the soil drainage only
since the injection is stopped, inducing a diminution of the
total mass variation.

40

Time

Figure 11: TC3 - Mass repartition for DDFV (solid lines)
and SWIP (dashed lines).
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Figure 10: TC3 - Isolines of overpressure atfér DDFV A N T
(top) and SWIP (bottom). g 1,
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o001l /
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I
The total mass balance defect (or mass ert), [E"| |
is plotted on Fig 12, where various toleranees the lin-

earization algorithm are tested. Whes: 1073, the defects 0 1 2
look similar, but lowering the tolerance has no improving ef
fect with SWIP. Mass error can be reduced by using higher .
order approximations instead. Meanwhile, about two orderk'gure 12: TC3 - Mass error for DDFV (solid lines) and
of magnitude can still be gained with DDFV before conver-SWIP (dashed lines).

gence, which is achieved fer= 10-°.

3
Time

5 CONCLUSION

We presented a comparison between a discontinuous finite
element method and a more recent finite volume scheme on
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various test cases. As was presented in section 2, the aR-Eymard, C. Guichard, R. Herbin, and R. Masson. Vertexredn
proaches are quite fiierent and the numerical results high-  discretization of multiphase compositional Darcy flows emg
light different behaviors. First, DDFV provides a sparser €ral meshesComputational Geosciencesages 1-19, 2012.

structure than SWIP which produces in return a narrowep- Fagherazzi, D.J. Furbish, P. Rasetarinera, and M.Y.dfiss
bandwith and a better condition number. In thefstase, Application of the discontinuous spectral Galerkin mettod

DDFYV verifies the discrete maximum principle while SWIP groundwater flowAdvances in water resource? (2):129-140,
2004.

eyaluatgs better the Spged of propagation for coarse meshes yajrer and Wanner ESolving ordinary dfferential equations
Finally, in the quarter five-spot problem, the two methods ;. springer, 2010.
are in accordance for the overpressure and the mass repai- Haverkamp, M. Vauclin, J. Touma, PJ Wierenga, and
tion over time. The mass balance defect can be considerably G. Vachaud. A comparison of numerical simulation models for
lowered with DDFV by requiring a more restrictive toler-  one-dimensional infiltration.Soil Science Society of America
ance in the Picard algorithm. Journal 41(2):285-294, 1977.
R. Herbin, F. Hubert, et al. Benchmark on discretizatioresobs
for anisotropic dffusion problems on general gridinite vol-
umes for complex applications Wages 659-692, 2008.
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